Earwax

Earwax, also known by the medical term cerumen, is a yellowish waxy substance secreted in the ear canal of humans and other mammals. It protects the skin of the human ear canal, assists in cleaning and lubrication, and also provides some protection from bacteria, fungi, insects and water.[1] Excess or impacted cerumen can press against the eardrum and/or occlude the external auditory canal and impair hearing.

Contents

Signs and symptoms

Excessive cerumen may impede the passage of sound in the ear canal, causing conductive hearing loss. It is also estimated to be the cause of 60–80% of hearing aid faults.[2]

Physiology

Cerumen is produced in the outer third of the cartilaginous portion of the human ear canal. It is a mixture of viscous secretions from sebaceous glands and less-viscous ones from modified apocrine sweat glands.[3] The primary components of earwax are shed layers of skin, with 60% of the earwax consisting of keratin, 12–20% saturated and unsaturated long-chain fatty acids, alcohols, squalene and 6–9% cholesterol.[4]

Fear, stress and anxiety result in increased production of earwax from the ceruminous glands.[5][6]

There are two distinct genetically determined types of earwax: the wet type, which is dominant, and the dry type, which is recessive. While Asians and Native Americans are more likely to have the dry type of cerumen (gray and flaky), black and white people are more likely to have the wet type (honey-brown to dark-brown and moist).[7] Cerumen type has been used by anthropologists to track human migratory patterns, such as those of the Inuit.[8] Wet-type earwax is more prevalent among the Ainu of Japan, in contrast to Japanese people.[9] The consistency of wet type earwax is due to the higher concentration of lipid and pigment granules (50% lipid) in the substance than the dry type (30% lipid).[4]

The difference in cerumen type has been tracked to a single base change (a single nucleotide polymorphism) in a gene known as "ATP-binding cassette C11 gene."[10] In addition to affecting cerumen type, this mutation also reduces sweat production. The researchers conjecture that the reduction in sweat was beneficial to the ancestors of East Asians and Native Americans who are thought to have lived in cold climates.[11]

Cleaning

Cleaning of the ear canal occurs as a result of the "conveyor belt" process of epithelial migration, aided by jaw movement.[12] Cells formed in the centre of the tympanic membrane migrate outwards from the umbo (at a rate comparable to that of fingernail growth) to the walls of the ear canal, and move towards the entrance of the ear canal. The cerumen in the canal is also carried outwards, taking with it any dirt, dust, and particulate matter that may have gathered in the canal. Jaw movement assists this process by dislodging debris attached to the walls of the ear canal, increasing the likelihood of its expulsion.

Lubrication

Lubrication prevents desiccation, itching, and burning of the skin within the ear canal (known as asteatosis). The lubricative properties arise from the high lipid content of the sebum produced by the sebaceous glands. In wet-type cerumen at least, these lipids include cholesterol, squalene, and many long-chain fatty acids and alcohols.[13][14]

Antibacterial and antifungal effects

While studies conducted up until the 1960s found little evidence supporting antibacterial activity for cerumen,[15] more recent studies have found that cerumen has a bactericidal effect on some strains of bacteria. Cerumen has been found to reduce the viability of a wide range of bacteria, including Haemophilus influenzae, Staphylococcus aureus, and many variants of Escherichia coli, sometimes by as much as 99%.[16][17] The growth of two fungi commonly present in otomycosis was also significantly inhibited by human cerumen.[18] These antimicrobial properties are due principally to the presence of saturated fatty acids, lysozyme and, especially, to the slight acidity of cerumen (pH typically around 6.1 in normal individuals[19]).

Treatment

Movement of the jaw helps the ears' natural cleaning process. The American Academy of Otolaryngology discourages earwax removal unless excess earwax is causing health problems.[20] While a number of methods of earwax removal are effective, their benefits as compared to each other is not yet determined.[21] A number of softeners are effective; however, if this is not sufficient,[21] the most common method of cerumen removal is syringing with warm water.[22] A curette method is more likely to be used by otolaryngologists when the ear canal is partially occluded and the material is not adhering to the skin of the ear canal. Cotton swabs, on the other hand, push most of the earwax further into the ear canal and remove only a small portion of the top layer of wax that happens to adhere to the fibres of the swab.[23]

Softeners

This process is referred to as cerumenolysis and is achieved using a solution known as a cerumenolytic agent, which is introduced into the ear canal. It usually makes the wax come out,[24] and if it doesn't, it facilitates removal by syringing or curettage.

Commercially or commonly available cerumenolytics include:[25]

A cerumenolytic should be used 2–3 times daily for 3–5 days prior to the cerumen extraction.[26]

A review of studies found that topical preparations for the treatment of earwax were better than no treatment and that there was little difference between oil based and water based preparations (including plain water).[27][28]

Syringing

Once the cerumen has been softened, it may be removed from the ear canal by irrigation. This may be effectively accomplished with a bulb syringe at home.[29] Ear syringing techniques are described in great detail by Wilson & Roeser,[26] and Blake et al.,[30] who advise pulling the external ear up and back, and aiming the nozzle of the syringe slightly upwards and backwards so that the water flows as a cascade along the roof of the canal. The irrigation solution flows out of the canal along its floor, taking wax and debris with it. The solution used to irrigate the ear canal is usually warm water,[30] normal saline,[31] sodium bicarbonate solution,[32] or a solution of water and vinegar to help prevent secondary infection.[30]

Patients generally prefer the irrigation solution to be warmed to body temperature,[31] as dizziness is a common side effect of syringing with fluids that are colder or warmer than body temperature. Sharp et al.[22] recommend 37 °C, while Blake et al.[30] recommend using water at 38 °C, one degree above body temperature, and stress that this should be checked with a thermometer. Any other temperature may cause vertigo, just as used when testing the caloric reflex test.

A syringe should be used to gently stream water into the ear. For children the rate and speed should be lower. After irrigating, the head is tipped to allow the water to drain. Irrigation may need to be repeated several times. If the water stream hurts, then the flow should be slower. It is better to irrigate too gently for a long period than irrigate too forcefully attempting to remove wax quickly. This procedure can be done at home in the shower using an ear irrigation syringe with a right angle tip. After the wax is removed, the ear can be dried by tipping the head and gently pulling the ear upwards to straighten the ear canal.

Curette and cotton swabs

Earwax can be removed with an ear pick/curette, which physically dislodges the earwax and scoops it out of the ear canal. In the west, use of ear picks is usually only done by health professionals; a modified curette having a safety stop to prevent deep insertion for self-use is available. Curetting earwax using an ear pick is common in East Asia. As the earwax of most East Asians is of the dry type,[7] it is extremely easily removed by light scraping with an ear pick, as it simply falls out in large pieces or dry flakes, often on its own.

It is generally advised not to use cotton swabs (Q-Tips or cotton buds), as doing so will likely push the wax farther down the ear canal, and if used carelessly, perforate the eardrum.[23] Abrasion of the ear canal, particularly after water has entered from swimming or bathing, can lead to ear infection. Also, the cotton head may fall off and become lodged in the ear canal. Cotton swabs should be used only to clean the external ear.

Vacuuming

Vacuuming of the ear may be done by professionals[33][34] or by home-vacuum kits. However, home "ear vacs" were ineffective at removing ear-wax, especially when compared to a Jobson-Horne probe.[35]

Complications of removal

A postal survey of British general practitioners[22] found that only 19% always performed cerumen removal themselves; many delegated the task to practice nurses, some of whom had received no instruction. It is problematic as the removal of cerumen is not without risk. Irrigation can be performed at home with proper equipment as long as the person is careful not to irrigate too hard. All other methods should only be carried out by individuals who have been sufficiently trained in the procedure.

The author Bull advised physicians: "After removal of wax, inspect thoroughly to make sure none remains. This advice might seem superfluous, but is frequently ignored."[32] This was confirmed by Sharp et al.,[22] who, in a survey of 320 general practitioners, found that only 68% of doctors inspected the ear canal after syringing to check that the wax was removed. As a result, failure to remove the wax from the canal made up approximately 30% of the complications associated with the procedure. Other complications included otitis externa, pain, vertigo, tinnitus, and perforation of the ear drum. Based on this study, a rate of major complications in 1/1000 ears syringed was suggested.[22]

Claims arising from ear syringing mishaps account for about 25% of the total claims received by New Zealand's Accident Compensation Corporation ENT Medical Misadventure Committee.[30] While high, this is not surprising, as ear syringing is an extremely common procedure. Grossan suggested that approximately 150,000 ears are irrigated each week in the United States, and about 40,000 per week in the United Kingdom.[36] Extrapolating from data obtained in Edinburgh, Sharp et al.[22] place this figure much higher, estimating that approximately 7000 ears are syringed per 100,000 population per annum. In the New Zealand claims mentioned above, perforation of the tympanic membrane was by far the most common injury resulting in significant disability.

Alternative medicine

Ear candling, also called ear coning or thermal-auricular therapy, is an alternative medicine practice claimed to improve general health and well-being by lighting one end of a hollow candle and placing the other end in the ear canal. According to medical researchers, it is both dangerous and ineffective.[37] Advocates say that the dark residue that shows after the procedure is extracted earwax, proving the efficacy of the procedure. Studies have shown that in fact the same residue is left whether or not the candle (which is made of cotton fabric and beeswax and leaves a residue after burning) is inserted into an ear.

History

The treatment of ear wax was described by Aulus Cornelius Celsus in De Medicina in the first century:[38]

When a man is becoming dull of hearing, which happens most often after prolonged headaches, in the first place, the ear itself should be inspected: for there will be found either a crust such as comes upon the surface of ulcerations, or concretions of wax. If a crust, hot oil is poured in, or verdigris mixed with honey or leek juice or a little soda in honey wine. And when the crust has been separated from the ulceration, the ear is irrigated with tepid water, to make it easier for the crusts now disengaged to be withdrawn by the ear scoop. If it be wax, and if it be soft, it can be extracted in the same way by the ear scoop; but if hard, vinegar containing a little soda[39] is introduced; and when the wax has softened, the ear is washed out and cleared as above. ... Further, the ear should be syringed with castoreum mixed with vinegar and laurel oil and the juice of young radish rind, or with cucumber juice, mixed with crushed rose leaves. The dropping in of the juice of unripe grapes mixed with rose oil is also fairly efficacious against deafness.

Uses for earwax

In other animals

References

  1. ^ Earwax at the American Hearing Research Foundation. Chicago, Illinois 2008.
  2. ^ Oliveira RJ (December 1997). "The active earcanal". Journal of the American Academy of Audiology 8 (6): 401–10. PMID 9433686. 
  3. ^ Alvord LS, Farmer BL (December 1997). "Anatomy and orientation of the human external ear". Journal of the American Academy of Audiology 8 (6): 383–90. PMID 9433684. 
  4. ^ a b Guest JF, Greener MJ, Robinson AC, Smith AF (August 2004). "Impacted cerumen: composition, production, epidemiology and management". QJM 97 (8): 477–88. doi:10.1093/qjmed/hch082. PMID 15256605. 
  5. ^ Nicol, Maggie; Brooker, Christine (2003). Nursing adults: the practice of caring. St. Louis: Mosby. p. 376. ISBN 0-7234-3157-4. http://books.google.com/?id=ao1R9sOIQZQC&pg=PA376. 
  6. ^ Taor, Adam (January 24, 2009). "Ear Wax – Ceruminous glands: microbes, mammary glands and medieval manuscripts". http://www.missionandjustice.org/ear-wax-ceruminous-glands-microbes-mammary-glands-and-medieval-manuscripts/. 
  7. ^ a b Overfield, Theresa (1985). Biologic variation in health and illness: race, age, and sex differences. Menlo Park, Calif: Addison-Wesley, Nursing Division. p. 46. ISBN 0-201-12810-1. "... most common type in Whites and Blacks is dark brown and moist. Dry wax, most common in Orientals and Native Americans, is gray and dry. It is flaky and may form a thin mass that lies in the ear canal." 
  8. ^ Bass EJ, Jackson JF (September 1977). "Cerumen types in Eskimos". American Journal of Physical Anthropology 47 (2): 209–10. doi:10.1002/ajpa.1330470203. PMID 910884. 
  9. ^ Miscellaneous musings on the Ainu, I.
  10. ^ Online 'Mendelian Inheritance in Man' (OMIM) 117800
  11. ^ Yoshiura K, Kinoshita A, Ishida T, et al. (March 2006). "A SNP in the ABCC11 gene is the determinant of human earwax type". Nature Genetics 38 (3): 324–30. doi:10.1038/ng1733. PMID 16444273. 
  12. ^ Alberti PW (September 1964). "Epithelial migration on the tympanic membrane". The Journal of Laryngology and Otology 78: 808–30. PMID 14205963. 
  13. ^ Harvey DJ (September 1989). "Identification of long-chain fatty acids and alcohols from human cerumen by the use of picolinyl and nicotinate esters". Biomedical & Environmental Mass Spectrometry 18 (9): 719–23. doi:10.1002/bms.1200180912. PMID 2790258. 
  14. ^ Bortz JT, Wertz PW, Downing DT (November 1990). "Composition of cerumen lipids". Journal of the American Academy of Dermatology 23 (5 Pt 1): 845–9. doi:10.1016/0190-9622(90)70301-W. PMID 2254469. 
  15. ^ Nichols AC, Perry ET (September 1956). "Studies on the growth of bacteria in the human ear canal". The Journal of Investigative Dermatology 27 (3): 165–70. doi:10.1038/jid.1956.22. PMID 13367525. 
  16. ^ Chai TJ, Chai TC (October 1980). "Bactericidal activity of cerumen". Antimicrobial Agents and Chemotherapy 18 (4): 638–41. PMC 284062. PMID 7447422. http://aac.asm.org/cgi/pmidlookup?view=long&pmid=7447422. 
  17. ^ Stone M, Fulghum RS (1984). "Bactericidal activity of wet cerumen". The Annals of Otology, Rhinology, and Laryngology 93 (2 Pt 1): 183–6. PMID 6370076. 
  18. ^ Megarry S, Pett A, Scarlett A, Teh W, Zeigler E, Canter RJ (August 1988). "The activity against yeasts of human cerumen". The Journal of Laryngology and Otology 102 (8): 671–2. PMID 3047287. 
  19. ^ Roland PS, Marple BF (December 1997). "Disorders of the external auditory canal". Journal of the American Academy of Audiology 8 (6): 367–78. PMID 9433682. 
  20. ^ Bryner, Jeanna. "Now Hear This: Don't Remove Earwax", LiveScience, 29 August 2008. Retrieved on 7 September 2008.
  21. ^ a b Clegg AJ, Loveman E, Gospodarevskaya E, et al. (June 2010). "The safety and effectiveness of different methods of earwax removal: a systematic review and economic evaluation". Health Technol Assess 14 (28): 1–192. doi:10.3310/hta14280. PMID 20546687. 
  22. ^ a b c d e f Sharp JF, Wilson JA, Ross L, Barr-Hamilton RM (December 1990). "Ear wax removal: a survey of current practice". BMJ 301 (6763): 1251–3. doi:10.1136/bmj.301.6763.1251. PMC 1664378. PMID 2271824. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1664378. 
  23. ^ a b "Ear wax". Tchain.com. http://www.tchain.com/otoneurology/disorders/hearing/wax2.html. Retrieved 2010-05-02. 
  24. ^ hygieneexpert.co.uk Ear Care and Wax Build Up
  25. ^ Fraser JG (October 1970). "The efficacy of wax solvents: in vitro studies and a clinical trial". The Journal of Laryngology and Otology 84 (10): 1055–64. PMID 5476901. 
  26. ^ a b Wilson PL, Roeser RJ (December 1997). "Cerumen management: professional issues and techniques". Journal of the American Academy of Audiology 8 (6): 421–30. PMID 9433688. 
  27. ^ Burton MJ, Doree C (2009). Burton, Martin J. ed. "Ear drops for the removal of earwax". Cochrane Database of Systematic Reviews (1): CD004326. doi:10.1002/14651858.CD004326.pub2. PMID 19160236. 
  28. ^ Hand C, Harvey I (November 2004). "The effectiveness of topical preparations for the treatment of earwax: a systematic review". The British Journal of General Practice 54 (508): 862–7. PMC 1324923. PMID 15527615. http://openurl.ingenta.com/content/nlm?genre=article&issn=0960-1643&volume=54&issue=508&spage=862&aulast=Hand. 
  29. ^ Coppin R, Wicke D, Little P (2011). "Randomized trial of bulb syringes for earwax: impact on health service utilization". Ann Fam Med 9 (2): 110–4. doi:10.1370/afm.1229. PMID 21403136. 
  30. ^ a b c d e Blake P, Matthews R, Hornibrook J (November 1998). "When not to syringe an ear". The New Zealand Medical Journal 111 (1077): 422–4. PMID 9861921. 
  31. ^ a b Ernst AA, Takakuwa KM, Letner C, Weiss SJ (September 1999). "Warmed versus room temperature saline solution for ear irrigation: a randomized clinical trial". Annals of Emergency Medicine 34 (3): 347–50. doi:10.1016/S0196-0644(99)70129-0. PMID 10459091. 
  32. ^ a b Bull, P. D. (2002). Lecture notes on diseases of the ear, nose, and throat (6th ed.). Oxford: Blackwell Science. ISBN 0-632-06506-0. 
  33. ^ http://www.youtube.com/watch?v=EgYgHU9fwEc
  34. ^ http://www.youtube.com/watch?v=ME0gAP_zixc
  35. ^ Leong AC, Aldren C (August 2005). "A non-randomized comparison of earwax removal with a 'do-it-yourself' ear vacuum kit and a Jobson-Horne probe". Clinical Otolaryngology 30 (4): 320–3. doi:10.1111/j.1365-2273.2005.01020.x. PMID 16209672. 
  36. ^ Grossan M (July 1998). "Cerumen removal--current challenges". Ear, Nose, & Throat Journal 77 (7): 541–6, 548. PMID 9693470. 
  37. ^ Seely DR, Quigley SM, Langman AW (October 1996). "Ear candles--efficacy and safety". The Laryngoscope 106 (10): 1226–9. doi:10.1097/00005537-199610000-00010. PMID 8849790. 
  38. ^ Celsus, Aulus Cornelius; W.G. Spencer translation. "Book VI". De Medicina. http://penelope.uchicago.edu/Thayer/E/Roman/Texts/Celsus/6*.html. 
  39. ^ "acetum et cum eo nitri paulum". Nitri is rendered as "soda" here, i.e. soda ash, though the word can refer to a variety of alkaline substances or to sodium nitrate.(http://www.archives.nd.edu/cgi-bin/words.exe?nitri http://www.history-science-technology.com/Notes/Notes%208.htm) Note that acidification of sodium carbonate yields sodium bicarbonate.
  40. ^ Iberian manuscripts (pigments)
  41. ^ The American frugal housewife ... - Google Books. Books.google.ca. 1841. p. 116. http://books.google.com/?id=D3AEAAAAYAAJ&dq=%22The+American+Frugal+Housewife%22&pg=PP1#PPA116,M1. Retrieved 2010-05-02. 
  42. ^ Beaudry, Mary C., Bodkin Biographies Retrieved 2012-01-03
  43. ^ Craig S. Nelson. "What can you tell us about whale ear wax?". Cs.ucf.edu. http://www.cs.ucf.edu/~MidLink/baldrige.jan.two.html. Retrieved 2010-06-20. 

Further reading

External links

News