Formic acid

Formic acid
Identifiers
CAS number 64-18-6 Y
PubChem 284
ChemSpider 278 Y
UNII 0YIW783RG1 Y
DrugBank DB01942
KEGG C00058 Y
ChEBI CHEBI:30751 Y
ChEMBL CHEMBL116736 Y
RTECS number LQ4900000
ATCvet code QP53AG01
Jmol-3D images Image 1
Properties
Molecular formula CH2O2
Molar mass 46.03 g mol−1
Appearance Colorless liquid
Density 1.22 g/mL
Melting point

8.4 °C, 282 K, 47 °F

Boiling point

100.8 °C, 374 K, 213 °F

Solubility in water Miscible
Acidity (pKa) 3.77 [2]
Viscosity 1.57 cP at 26 °C
Structure
Molecular shape Planar
Dipole moment 1.41 D(gas)
Hazards
MSDS External MSDS
R-phrases R10 R35
S-phrases (S1/2) S23 S26 S45
Main hazards Corrosive; irritant;
sensitizer.
NFPA 704
2
3
1
Flash point 69 °C (156 °F)
Related compounds
Related carboxylic acids Acetic acid
Propionic acid
Related compounds Formaldehyde
Methanol
Supplementary data page
Structure and
properties
n, εr, etc.
Thermodynamic
data
Phase behaviour
Solid, liquid, gas
Spectral data UV, IR, NMR, MS
 Y (verify) (what is: Y/N?)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa)
Infobox references

Formic acid (also called methanoic acid) is the simplest carboxylic acid. Its chemical formula is HCOOH or HCO2H. It is an important intermediate in chemical synthesis and occurs naturally, most notably in the venom of bee and ant stings. In fact, its name comes from the Latin word for ant, formica, referring to its early isolation by the distillation of ant bodies. Esters, salts, and the anion derived from formic acid are referred to as formates.

Contents

Properties

Formic acid is a colorless liquid having a highly pungent, penetrating odor[3] at room temperature. It is miscible with water and most polar organic solvents, and is somewhat soluble in hydrocarbons. In hydrocarbons and in the vapor phase, it consists of hydrogen-bonded dimers rather than individual molecules.[4][5] Owing to its tendency to hydrogen-bond, gaseous formic acid does not obey the ideal gas law.[5] Solid formic acid (two polymorphs) consists of an effectively endless network of hydrogen-bonded formic acid molecules. This relatively complicated compound also forms a low-boiling azeotrope with water (22.4%) and liquid formic acid also tends to supercool.

Natural occurrence

See also Insect defenses

In nature, it is found in the stings and bites of many insects of the order Hymenoptera, mainly ants. Because of its abundance in their diet, giant anteaters (unlike most mammals) do not produce hydrochloric acid for their gastric acid.[6]

Production

In 2009, the worldwide capacity for producing this compound was 720,000 tonnes/annum, with production capacity roughly equally divided between Europe (350,000, mainly in Germany) and Asia (370,000, mainly in China), while production was below 1000 tonnes/annum in all other continents.[7] It is commercially available in solutions of various concentrations between 85 and 99 w/w %.[4] As of 2009, the largest producers are BASF, Kemira and Feicheng Acid Chemicals, with the largest production facilities in Ludwigshafen (200,000 tonnes/annum, BASF, Germany), Oulu (105,000, Kemira, Finland) and Feicheng (100,000, Feicheng, China). 2010 Prices ranged from circa € 650/tonne in Western Europe and $ 1250/tonne in the United States.[7]

From methyl formate and formamide

When methanol and carbon monoxide are combined in the presence of a strong base, the formic acid derivative methyl formate results, according to the chemical equation:[4]

CH3OH + CO → HCO2CH3

In industry, this reaction is performed in the liquid phase at elevated pressure. Typical reaction conditions are 80 °C and 40 atm. The most widely-used base is sodium methoxide. Hydrolysis of the methyl formate produces formic acid:

HCO2CH3 + H2O → HCO2H + CH3OH

Efficient hydrolysis of methyl formate requires a large excess of water. Some routes proceed indirectly by first treating the methyl formate with ammonia to give formamide, which is then hydrolyzed with sulfuric acid:

HCO2CH3 + NH3 → HC(O)NH2 + CH3OH
2 HC(O)NH2 + 2 H2O + H2SO4 → 2HCO2H + (NH4)2SO4

This approach suffers from the need to dispose of the ammonium sulfate byproduct. This problem has led some manufacturers to develop energy efficient means for separating formic acid from the large excess amount of water used in direct hydrolysis. In one of these processes (used by BASF) the formic acid is removed from the water via liquid-liquid extraction with an organic base.

By-product of acetic acid production

A significant amount of formic acid is produced as a byproduct in the manufacture of other chemicals. At one time, acetic acid was produced on a large scale by oxidation of alkanes, via a process that cogenerates significant formic acid. This oxidative route to acetic acid is declining in importance, so that the aforementioned dedicated routes to formic acid have become more important.

Hydrogenation of carbon dioxide

The catalytic hydrogenation of CO2 has long been studied. This reaction can be conducted homogeneously.[8][9]

Laboratory methods

In the laboratory, formic acid can be obtained by heating oxalic acid in anhydrous glycerol and extraction by steam distillation. Another preparation (which must be performed under a fume hood) is the acid hydrolysis of ethyl isonitrile (C2H5NC) using HCl solution.[10]

C2H5NC + 2 H2O → C2H5NH2 + HCO2H

The isonitrile can be obtained by reacting ethyl amine with chloroform (note that the fume hood is required because of the overpoweringly objectionable odor of the isonitrile).

Uses

A major use of formic acid is as a preservative and antibacterial agent in livestock feed. In Europe, it is applied on silage (including fresh hay) to promote the fermentation of lactic acid and to suppress the formation of butyric acid; it also allows fermentation to occur quickly, and at a lower temperature, reducing the loss of nutritional value.[4] Formic acid arrests certain decay processes and causes the feed to retain its nutritive value longer, and so it is widely used to preserve winter feed for cattle. In the poultry industry, it is sometimes added to feed to kill E. coli bacteria.[11][12] Use as preservative for silage and (other) animal feed constituted 30% of the global consumption in 2009.[7]

Formic acid is also significantly used in the production of leather -incl. tanning- (23% of the global consumption in 2009[7]) and in dying and finishing of textile (9% of the global consumption in 2009[7]) because of its acidic nature. Use as a coagulant in the production of rubber[4] constituted in 2009 6% of the global consumption.[7]

Formic acid is also used in place of mineral acids for various cleaning products,[4] such as limescale remover and toilet bowl cleaner. Some formate esters are artificial flavorings or perfumes. Beekeepers use formic acid as a miticide against the tracheal mite (Acarapis woodi) and the Varroa mite.[13] The use of formic acid in fuel cells is also under investigation.[14]

Laboratory use

Formic acid is a source for a formyl group for example in the formylation of methylaniline to N-methylformanilide in toluene.[15] In synthetic organic chemistry, formic acid is often used as a source of hydride ion. The Eschweiler-Clarke reaction and the Leuckart-Wallach reaction are examples of this application. It, or more commonly its azeotrope with triethylamine, is also used as a source of hydrogen in transfer hydrogenation.

Like acetic acid and trifluoroacetic acid, formic acid is commonly used as a volatile pH modifier in HPLC and capillary electrophoresis.

As mentioned below, formic acid may serve as a convenient source of carbon monoxide by being readily decomposed by sulfuric acid.

Reactions

Formic acid shares most of the chemical properties of other carboxylic acids. Reflecting its high acidity, its solutions in alcohols form esters spontaneously. Formic acid shares some of the reducing properties of aldehydes, reducing solutions of gold, silver, and platinum to the metals.

Decomposition

Heat and especially acids cause formic acid to decompose to carbon monoxide (CO) and water (dehydration). Treatment of formic acid with sulfuric acid is a convenient laboratory source of CO.[16][17]

In the presence of platinum, it decomposes with a release of hydrogen and carbon dioxide. Soluble ruthenium catalysts are also effective.[18][19] Carbon monoxide free hydrogen has been generated in a very wide pressure range (1-600 bar). Formic acid has even been considered as a material for hydrogen storage.[20] The co-product of this decomposition, carbon dioxide, can be rehydrogenated back to formic acid in a second step. Formic acid contains 53 g L−1 hydrogen at room temperature and atmospheric pressure, which is twice as much as compressed hydrogen gas can attain at 350 bar pressure. Pure formic acid is a liquid with a flash point - ignition temperature of + 69 °C, much higher than that of gasoline (– 40 °C) or ethanol (+ 13 °C).

Addition to alkenes

Formic acid is unique among the carboxylic acids in its ability to participate in addition reactions with alkenes. Formic acids and alkenes readily react to form formate esters. In the presence of certain acids, including sulfuric and hydrofluoric acids, however, a variant of the Koch reaction occurs instead, and formic acid adds to the alkene to produce a larger carboxylic acid.

Formic acid anhydride

An unstable formic anhydride, H(C=O)-O-(C=O)H, can be obtained by dehydration of formic acid with N,N'-Dicyclohexylcarbodiimide in ether at low temperature.[21]

History

Some alchemists and naturalists were aware that ant hills give off an acidic vapor as early as the 15th century. The first person to describe the isolation of this substance (by the distillation of large numbers of ants) was the English naturalist John Ray, in 1671. Ants secrete the formic acid for attack and defense purposes. Formic acid was first synthesized from hydrocyanic acid by the French chemist Joseph Gay-Lussac. In 1855, another French chemist, Marcellin Berthelot, developed a synthesis from carbon monoxide that is similar to that used today.

Formic acid was long considered a chemical compound of only minor industrial interest in the chemical industry. In the late 1960s, however, significant quantities of it became available as a byproduct of acetic acid production. It now finds increasing use as a preservative and antibacterial in livestock feed.

Safety

Formic acid in 85% concentration is not flammable, and diluted formic acid is on the US Food and Drug Administration list of food additives.[22] The principal danger from formic acid is from skin or eye contact with the concentrated liquid or vapors. The US OSHA Permissible Exposure Level (PEL) of formic acid vapor in the work environment is 5 parts per million parts of air (ppm).

Formic acid is readily metabolized and eliminated by the body. Nonetheless, it has specific toxic effects; the formic acid and formaldehyde produced as metabolites of methanol are responsible for the optic nerve damage, causing blindness seen in methanol poisoning.[23] Some chronic effects of formic acid exposure have been documented. Some experiments on bacterial species have demonstrated it to be a mutagen.[24] Chronic exposure to humans may cause kidney damage.[24] Another effect of chronic exposure is development of a skin allergy that manifests upon re-exposure to the chemical.

Concentrated formic acid slowly decomposes to carbon monoxide and water, leading to pressure buildup in the container it is kept in. For this reason, 98% formic acid is shipped in plastic bottles with self-venting caps.

The hazards of solutions of formic acid depend on the concentration. The following table lists the EU classification of formic acid solutions:

Concentration (weight percent) Classification R-Phrases
2%–10% Irritant (Xi) R36/38
10%–90% Corrosive (C) R34
>90% Corrosive (C) R35

An assay for formic acid in body fluids, designed for determination of formate after methanol poisoning, is based on the reaction of formate with bacterial formate dehydrogenase.[25]

See also

References

  1. ^ PubChem 284
  2. ^ Brown, H. C. et al., in Braude, E. A. and Nachod, F. C., Determination of Organic Structures by Physical Methods, Academic Press, New York, 1955.
  3. ^ OSHA description.
  4. ^ a b c d e f Werner Reutemann and Heinz Kieczka “Formic Acid” in Ullmann's Encyclopedia of Industrial Chemistry 2002, Wiley-VCH, Weinheim. doi:10.1002/14356007.a12_013
  5. ^ a b Roman M. Balabin (2009). "Polar (Acyclic) Isomer of Formic Acid Dimer: Gas-Phase Raman Spectroscopy Study and Thermodynamic Parameters". J. Phys. Chem. A 113 (17): 4910–8. doi:10.1021/jp9002643. PMID 19344174. 
  6. ^ ANTEATERS at the Natural History Collection of the University of Edinburgh
  7. ^ a b c d e f S.N. Bizzari and M. Blagoev (june 2010). "CEH Marketing Research Report: FORMIC ACID". Chemical Economics Handbook. SRI consulting. http://www.sriconsulting.com/CEH/Public/Reports/659.2000/. Retrieved July 2011. 
  8. ^ P. G. Jessop, in Handbook of Homogeneous Hydrogenation (Eds.: J. G. de Vries, C. J. Elsevier), Wiley-VCH, Weinheim, Germany, 2007, pp. 489–511.
  9. ^ P. G. Jessop, F. Joó, C.-C. Tai (2004). "Recent advances in the homogeneous hydrogenation of carbon dioxide". Coord. Chem. Rev. 248 (21–24): 2425. doi:10.1016/j.ccr.2004.05.019. 
  10. ^ Cohen, Julius B.: Practical Organic Chemistry MacMillan 1930
  11. ^ Griggs, J. P.; J (2005). "Alternatives to Antibiotics for Organic Poultry Production". The Journal of Applied Poultry Research 14 (4): 750. http://japr.fass.org/cgi/content/abstract/14/4/750. 
  12. ^ Garcia, V.; Catala-Gregori, P.; Hernandez, F.; Megias, M. D.; Madrid, J. (2007). "Effect of Formic Acid and Plant Extracts on Growth, Nutrient Digestibility, Intestine Mucosa Morphology, and Meat Yield of Broilers". The Journal of Applied Poultry Research 16 (4): 555. doi:10.3382/japr.2006-00116. http://japr.fass.org/cgi/content/full/16/4/555. 
  13. ^ http://www.biobees.com/library/pesticides_GM_threats/miticides_varroa_acarapis.pdf
  14. ^ S. Ha, R. Larsen, and R. I. Masel, "Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells," Journal of Power Sources, 144, 28-34 (2005)
  15. ^ L. F. Fieser and J. E. Jones (1955), "N-Methylformanilide", Org. Synth., http://www.orgsyn.org/orgsyn/orgsyn/prepContent.asp?prep=cv3p0590 ; Coll. Vol. 3: 590 
  16. ^ Koch, H.; Haaf, W. (1973), "1-Adamantanecarboxylic Acid", Org. Synth., http://www.orgsyn.org/orgsyn/orgsyn/prepContent.asp?prep=cv5p0020 ; Coll. Vol. 5: 20 
  17. ^ G. H. Coleman, David Craig (1943), "p-Tolualdehyde", Org. Synth., http://www.orgsyn.org/orgsyn/orgsyn/prepContent.asp?prep=cv2p0583 ; Coll. Vol. 2: 583 
  18. ^ C. Fellay, P. J. Dyson, G. Laurenczy (2008). "A Viable Hydrogen-Storage System Based On Selective Formic Acid Decomposition with a Ruthenium Catalyst". Angew. Chem. Int. Ed. 47 (21): 3966–3970. doi:10.1002/anie.200800320. PMID 18393267. 
  19. ^ G. Laurenczy, C. Fellay, P. J. Dyson, Hydrogen production from formic acid. PCT Int. Appl. (2008), 36pp. CODEN: PIXXD2 WO 2008047312 A1 20080424 AN 2008:502691
  20. ^ Joó, Ferenc (2008). "Breakthroughs in Hydrogen Storage-Formic Acid as a Sustainable Storage Material for Hydrogen". ChemSusChem 1 (10): 805–8. doi:10.1002/cssc.200800133. PMID 18781551. 
  21. ^ G. Wu, S. Shlykov, F. S. Van Alseny, H. J. Geise, E. Sluyts, B. J. Van der Veken (1995), Formic Anhydride in the Gas Phase, Studied by Electron Diffraction and Microwave and Infrared Spectroscopy, Supplemented with Ab-Initio Calculations of Geometries and Force Fields. J. Phys. Chem., volume 99, issue 21, pages 8589–8598 doi:10.1021/j100021a022
  22. ^ US Code of Federal Regulations: 21 CFR 186.1316, 21 CFR 172.515
  23. ^ "Methanol and Blindness". Ask A Scientist, Chemistry Archive. http://www.newton.dep.anl.gov/askasci/chem03/chem03561.htm. Retrieved 22 May 2007. 
  24. ^ a b "Occupational Safety and Health Guideline for Formic Acid". OSHA. http://www.osha.gov/SLTC/healthguidelines/formicacid/recognition.html. Retrieved 28 May 2011. 
  25. ^ Makar AB, McMartin KE, Palese M, Tephly TR (1975). "Formate assay in body fluids: application in methanol poisoning". Biochem Med 13 (2): 117–26. doi:10.1016/0006-2944(75)90147-7. PMID 1. 

External links