10-orthoplex

10-orthoplex
Decacross

Orthogonal projection
inside Petrie polygon
Type Regular 10-polytope
Family orthoplex
Schläfli symbol {38,4}
{37,1,1}
Coxeter-Dynkin diagrams
9-faces 1024 {38}
8-faces 5120 {37}
7-faces 11520 {36}
6-faces 15360 {35}
5-faces 13440 {34}
4-faces 8064 {33}
Cells 3360 {3,3}
Faces 960 {3}
Edges 180
Vertices 20
Vertex figure 9-orthoplex
Petrie polygon Icosagon
Coxeter groups C10, [38,4]
D10, [37,1,1]
Dual 10-cube
Properties convex

In geometry, a 10-orthoplex or 10-cross polytope, is a regular 10-polytope with 20 vertices, 180 edges, 960 triangle faces, 3360 octahedron cells, 8064 5-cells 4-faces, 13440 5-faces, 15360 6-faces, 11520 7-faces, 5120 8-faces, and 1024 9-faces.

It has two constructed forms, the first being regular with Schläfli symbol {38,4}, and the second with alternately labeled (checkerboarded) facets, with Schläfli symbol {37,1,1} or Coxeter symbol 711.

Contents

Alternate names

Related polytopes

It is one of an infinite family of polytopes, called cross-polytopes or orthoplexes. The dual polytope is the 10-hypercube or 10-cube.

Construction

There are two Coxeter groups associated with the 10-orthoplex, one regular, dual of the 10-cube with the C10 or [4,38] symmetry group, and a lower symmetry with two copies of 9-simplex facets, alternating, with the D10 or [37,1,1] symmetry group.

Cartesian coordinates

Cartesian coordinates for the vertices of a 10-orthoplex, centered at the origin are

(±1,0,0,0,0,0,0,0,0,0), (0,±1,0,0,0,0,0,0,0,0), (0,0,±1,0,0,0,0,0,0,0), (0,0,0,±1,0,0,0,0,0,0), (0,0,0,0,±1,0,0,0,0,0), (0,0,0,0,0,±1,0,0,0,0), (0,0,0,0,0,0,±1,0,0,0), (0,0,0,0,0,0,0,±1,0,0), (0,0,0,0,0,0,0,0,±1,0), (0,0,0,0,0,0,0,0,0,±1)

Every vertex pair is connected by an edge, except opposites.

Images

orthographic projections
B10 B9 B8
[20] [18] [16]
B7 B6 B5
[14] [12] [10]
B4 B3 B2
[8] [6] [4]

References

External links