In mathematical logic, the De Bruijn index is a notation invented by the Dutch mathematician Nicolaas Govert de Bruijn for representing terms in the λ calculus with the purpose of eliminating the names of the variable from the notation.[1] Terms written using these indexes are invariant with respect to α conversion, so the check for α-equivalence is the same as that for syntactic equality. Each De Bruijn index is a natural number that represents an occurrence of a variable in a λ-term, and denotes the number of binders that are in scope between that occurrence and its corresponding binder. The following are some examples:
De Bruijn indexes are commonly used in higher-order reasoning systems such as automated theorem provers and logic programming systems.[2]
Contents |
Formally, λ-terms (M, N, …) written using De Bruijn indexes have the following syntax (parentheses allowed freely):
where n — natural numbers greater than 0 — are the variables. A variable n is bound if it is in the scope of at least n binders (λ); otherwise it is free. The binding site for a variable n is the nth binder it is in the scope of, starting from the innermost binder.
The most primitive operation on λ-terms is substitution: replacing free variables in a term with other terms. In the β-reduction (λ M) N, for example, we must:
To illustrate, consider the application
which might correspond to the following term written in the usual notation
After step 1, we obtain the term λ 4 □ (λ 1 □), where the variables that are substituted for are replaced with boxes. Step 2 lowers the free variables, giving λ 3 □ (λ 1 □). Finally, in step 3 we replace the boxes with the argument; the first box is under one binder, so we replace it with λ 6 1 (which is λ 5 1 with the free variables increased by 1); the second is under two binders, so we replace it with λ 7 1. The final result is λ 3 (λ 6 1) (λ 1 (λ 7 1)).
Formally, a substitution is an unbounded list of term replacements for the free variables, written M1.M2…, where Mi is the replacement for the ith free variable. The increasing operation in step 3 is sometimes called shift and written ↑k where k is a natural number indicating the amount to increase the variables; For example, ↑0 is the identity substitution, leaving a term unchanged.
The application of a substitution s to a term M is written M[s]. The composition of two substitutions s1 and s2 is written s1 s2 and defined by
The rules for application are as follows:
The steps outlined for the β-reduction above are thus more concisely expressed as:
When using the standard "named" representation of λ-terms, where variables are treated as labels or strings, one has to explicitly handle α-conversion when defining any operation on the terms. The standard Variable Convention[3] of Barendregt is one such approach where α-conversion is applied as needed to ensure that:
In practice this is cumbersome, inefficient, and often error-prone. It has therefore led to the search for different representations of such terms. On the other hand, the named representation of λ-terms is more pervasive and can be more immediately understandable by others because the variables can be given descriptive names. Thus, even if a system uses De Bruijn indexes internally, it will present a user interface with names.
De Bruijn indexes are not the only representation of λ-terms that obviates the problem of α-conversion. Among named representations, the nominal approaches of Pitts and Gabbay is one approach, where the representation of a λ-term is treated as an equivalence class of all terms rewritable to it using variable permutations.[4] This approach is taken by the Nominal Datatype Package of Isabelle/HOL.[5]
Another common alternative is an appeal to higher-order representations where the λ-binder is treated as a true function. In such representations, the issues of α-equivalence, substitution, etc. are identified with the same operations in a meta-logic.
When reasoning about the meta-theoretic properties of a deductive system in a proof assistant, it is sometimes desirable to limit oneself to first-order representations and to have the ability to (re)name assumptions. The locally nameless approach uses a mixed representation of variables—De Bruijn indexes for bound variables and names for free variables—that is able to benefit from the α-canonical form of De Bruijn indexed terms when appropriate.[6][7]