In mathematics, directed complete partial orders and ω-complete partial orders (abbreviated to dcpo, ωcpo or sometimes just cpo) are special classes of partially ordered sets, characterized by particular completeness properties. Complete partial orders play a central role in theoretical computer science, in denotational semantics and domain theory.
Contents |
A partially ordered set is a directed complete partial order (dcpo) if each of its directed subsets has a supremum. Recall that a subset of a partial order is directed if it is non-empty and every pair of elements has an upper bound in the set. In the literature, dcpos sometimes also appear under the label up-complete poset or simply cpo.
In some contexts, the phrase ω-cpo (or just cpo) is used to describe a poset in which every ω-chain (x1≤x2≤x3≤x4≤...) has a supremum. Every dcpo is an ω-cpo.
An important role is played by dcpo's with a least element. They are sometimes called pointed dcpos, or cppos, or just cpos.
Requiring the existence of directed suprema can be motivated by viewing directed sets as generalized approximation sequences and suprema as limits of the respective (approximative) computations. This intuition, in the context of denotational semantics, was the motivation behind the development of domain theory.
The dual notion of a directed complete poset is called a filtered complete partial order. However, this concept occurs far less frequently in practice, since one usually can work on the dual order explicitly.
An ordered set P is a pointed dcpo if and only if every chain has a supremum in P. Alternatively, an ordered set P is a pointed dcpo if and only if every order-preserving self-map of P has a least fixpoint. Every set S can be turned into a pointed dcpo by adding a least element ⊥ and introducing a flat order with ⊥ ≤ s and s ≤ s for every s ∈ S and no other order relations.
A function f between two dcpos P and Q is called (Scott) continuous if it maps directed sets to directed sets while preserving their suprema:
Note that every continuous function between dcpos is a monotone function. This notion of continuity is equivalent to the topological continuity induced by the Scott topology.
The set of all continuous functions between two dcpos P and Q is denoted [P → Q]. Equipped with the pointwise order, this is again a dcpo, and a cpo whenever Q is a cpo. Thus the complete partial orders with Scott continuous maps form a cartesian closed category.[4]
Every order-preserving self-map f of a cpo (P, ⊥) has a least fixpoint.[5] If f is continuous then this fixpoint is equal to the supremum of the iterates (⊥, f(⊥), f(f(⊥)), … fn(⊥), …) of ⊥ (see also the Kleene fixpoint theorem).
Directed completeness relates in various ways to other completeness notions. Directed completeness alone is quite a basic property that occurs often in other order theoretic investigations, using for instance algebraic posets and the Scott topology.