DVB-RCT

DVB-RCT (Digital Video Broadcasting - Return Channel Terrestrial), provides a method by which the DVB-T platform can become a bi-directional, asymmetric, broadband and wireless path between broadcasters and customers. DVB-T when completed with DVB-RCT can be used not only for Interactive TV (voting, quiz, etc.), but also for interactive web sessions and for light IP telecommunication services. Various degrees of interactivity could be offered, without implying any return channel back from the user to the service provider: data carrousel or Electronic Programs Guides (EPG) are examples of such enhanced TV services which make use of “Local Interactivity”, without any return path from customer to provider. To implement new interactive services having a closely coupled and real-time relationship with the TV programs (e.g., interactive advertising, tele-voting, tele-quiz), a low latency return channel technology is mandatory, and this is the goal of the DVB-RCT.

Contents

Motivation

It was projected (in 2001) that revenues from TV commerce would exceed revenues from e-commerce in the home by 2008. T-commerce clearly requires a Return Path from the home back to the Digital TV Service Provider. The current scenario of UHF/VHF bands shows a very congested spectrum in several countries that could be a real problem for the introduction of new services.

Principal characteristics

Robust and flexible solution for DVB-T

From a pure technical point of view, DVB-RCT is built around technologies for digital transmission and information theory; in addition to the benefits of first generation OFDM technology for broadband portable and mobile services, Multiple AccessOFDM included in the DVB-RCT specification provides the following characteristics:

Physical parameters

Downstream Channel (DS) OFDM, ETS 300 744 (DVB-T) compliant
Return Interaction Channel Multiple Access OFDM (MA-OFDM)
Forward Interaction Channel (US) Embedded in DS, compliant with ETS 300 744 (DVB-T)
OFDM Carrier set 1024 (1K), 2048 (2K)
OFDM Carrier spacing (CS) ~1K, ~2K, ~4K
Transmission modes 6 modes (as combination of 3 CS and 2 Carrier set)
Carrier shaping Nyquist, Rectangular
Guard Interval 1/8, 1/16, 1/32 (for Rectangular shaping only)
Transmission Frames TF1, TF2
Data randomization PRBS with polynomial: 1+X14+x15
Modulation QPSK, 16QAM, 64QAM
Useful data payload per burst 18, 27, 36, 54, 81 bytes (1 burst = 144 modul. Symbols)
Channel codes Turbo or concatenated (Reed-Solomon + Convol.)
Interleaving Random Interleaver - PRBS with polynomial: 1+X3+x10
Burst Structures BS1, BS2, BS3
Frequency hopping for BS1 only (optional)
Medium Access Schemes MAS1, MAS2, MAS3 ( as combinations of BS and TF)
Net Bit rate /carrier (range) 0.6 kbit/s - 15 kbit/s (depending on the mode)
Service range Up to 65 km (cell radius)
Channelisation 6, 7, 8 MHz channels are supported

References