Convex uniform honeycombs in hyperbolic space

In geometry, a convex uniform honeycomb is a tessellation of convex uniform polyhedron cells. In 3-dimensional hyperbolic space there are nine Coxeter group families of compact convex uniform honeycombs, generated as Wythoff constructions, and represented by ring permutations of the Coxeter–Dynkin diagrams for each family.

Contents

Nine Coxeter group families

By Coxeter group and Coxeter–Dynkin diagrams, the nine are:[1]

# Witt
symbol
Coxeter
symbol
Coxeter
graph
Honeycombs
1 {\bar{BH}}_3 [4,3,5] 15 forms
2 {\bar{K}}_3 [5,3,5] 9 forms
2 {\bar{J}}_3 [3,5,3] 9 forms
4 {\bar{DH}}_3 [5,31,1] 11 forms (7 overlap with [5,3,4] family, 4 are unique)
5 {\hat{AB}}_3 [(3,3,3,4)] 9 forms
6 {\hat{AH}}_3 [(3,3,3,5)] 9 forms
7 {\hat{BB}}_3 [(3,4,3,4)] 6 forms
8 {\hat{BH}}_3 [(3,4,3,5)] 9 forms
9 {\hat{HH}}_3 [(3,5,3,5)] 6 forms

These 9 families generate a total of 76 unique uniform honeycombs.

The full list of hyperbolic uniform honeycombs has not been proven and an unknown number of non-Wythoffian forms exist. One known example is cited with the {3,5,3} family below.

Noncompact honeycombs

There are also 23 noncompact Coxeter groups of rank 4. These families can produce uniform honeycombs with infinite or unbounded facets or vertex figure, including ideal vertices at infinity. These forms are not listed in this article.

Hyperbolic noncompact groups
Type Coxeter groups Group count Honeycomb count
linear graphs , , , , , , 7 15+9+15+15+9+15+9=87
bifurcating graphs , , 3 11+11+7=29
cyclic graphs , , , , , , 7
mixed graphs , , , , , 6

[3,5,3] family

There are 9 forms, generated by ring permutations of the Coxeter group: [3,5,3] or

One related non-wythoffian form is constructed from the {3,5,3} vertex figure with 4 (tetrahedrally arranged) vertices removed, creating pentagonal antiprisms and dodecahedra filling in the gaps.[2]

# Honeycomb name
Coxeter–Dynkin
and Schläfli
symbols
Cell counts/vertex
and positions in honeycomb
0
1
2
3
Vertex figure picture
1 icosahedral
(Regular)

t0{3,5,3}
      (20)

(3.3.3.3.3)
2 rectified icosahedral

t1{3,5,3}
(2)

(5.5.5)
    (3)

(3.5.3.5)
3 truncated icosahedral

t0,1{3,5,3}
(1)

(5.5.5)
    (3)

(4.6.6)
4 cantellated icosahedral

t0,2{3,5,3}
(1)

(3.5.3.5)
(2)

(4.4.3)
  (2)

(3.5.4.5)
5 Runcinated icosahedral

t0,3{3,5,3}
(1)

(3.3.3.3.3)
(5)

(4.4.3)
(5)

(4.4.3)
(1)

(3.3.3.3.3)
6 bitruncated icosahedral

t1,2{3,5,3}
(2)

(3.10.10)
    (2)

(3.10.10)
7 cantitruncated icosahedral

t0,1,2{3,5,3}
(1)

(3.10.10)
(1)

(4.4.3)
  (2)

(4.6.10)
8 runcitruncated icosahedral

t0,1,3{3,5,3}
(1)

(3.5.4.5)
(1)

(4.4.3)
(2)

(4.4.6)
(1)

(4.6.6)
9 omnitruncated icosahedral

t0,1,2,3{3,5,3}
(1)

(4.6.10)
(1)

(4.4.6)
(1)

(4.4.6)
(1)

(4.6.10)
[77] partially truncated icosahedral
pt{3,5,3}
(4)

(5.5.5)
    (12)

(3.3.3.5)

[5,3,4] family

There are 15 forms, generated by ring permutations of the Coxeter group: [5,3,4] or

# Name of honeycomb
Coxeter–Dynkin diagram
Cells by location and count per vertex Vertex figure Picture
0
1
2
3
10 order-4 dodecahedral
(Regular)
- - - (8)


(5.5.5)
11 Rectified order-4 dodecahedral
(2)


(3.3.3.3)
- - (4)


(3.5.3.5)
12 Rectified order-5 cubic
(5)


(3.4.3.4)
- - (2)


(3.3.3.3.3)
13 order-5 cubic
(Regular)
(20)


(4.4.4)
- - -
14 Truncated order-4 dodecahedral
(1)


(3.3.3.3)
- - (4)


(3.10.10)
15 Bitruncated order-5 cubic
(2)


(4.6.6)
- - (2)


(5.6.6)
16 Truncated order-5 cubic
(5)


(3.8.8)
- - (1)


(3.3.3.3.3)
17 Cantellated order-4 dodecahedral
(1)


(3.4.3.4)
(2)


(4.4.4)
- (2)


(3.4.5.4)
18 Cantellated order-5 cubic
(2)


(3.4.4.4)
- (2)


(4.4.5)
(1)


(3.5.3.5)
19 Runcinated order-5 cubic
(1)


(4.4.4)
(3)


(4.4.4)
(3)


(4.4.5)
(1)


(5.5.5)
20 Cantitruncated order-4 dodecahedral
(1)


(4.6.6)
(1)


(4.4.4)
- (2)


(4.6.10)
21 Cantitruncated order-5 cubic
(2)


(4.6.8)
- (1)


(4.4.5)
(1)


(5.6.6)
22 Runcitruncated order-4 dodecahedral
(1)


(3.4.4.4)
(1)


(4.4.4)
(2)


(4.4.10)
(1)


(3.10.10)
23 Runcitruncated order-5 cubic
(1)


(3.8.8)
(2)


(4.4.8)
(1)


(4.4.5)
(1)


(3.4.5.4)
24 Omnitruncated order-5 cubic
(1)


(4.6.8)
(1)


(4.4.8)
(1)


(4.4.10)
(1)


(4.6.10)
[34] alternated order-5 cubic
(20)

(3.3.3)
    (12)

(3.3.3.3)

[5,3,5] family

There are 9 forms, generated by ring permutations of the Coxeter group: [5,3,5] or

# Name of honeycomb
Coxeter–Dynkin diagram
Cells by location and count per vertex Vertex figure
0
1
2
3
25 Order-5 dodecahedral

t0{5,3,5}
      (20)

(5.5.5)
26 rectified order-5 dodecahedral

t1{5,3,5}
(2)

(3.3.3.3.3)
    (5)

(3.5.3.5)
27 truncated order-5 dodecahedral

t0,1{5,3,5}
(1)

(3.3.3.3.3)
    (5)

(3.10.10)
28 cantellated order-5 dodecahedral

t0,2{5,3,5}
(1)

(3.5.3.5)
(2)

(4.4.5)
  (2)

(3.5.4.5)
29 Runcinated order-5 dodecahedral

t0,3{5,3,5}
(1)

(5.5.5)
(3)

(4.4.5)
(3)

(4.4.5)
(1)

(5.5.5)
30 bitruncated order-5 dodecahedral

t1,2{5,3,5}
(2)

(4.6.6)
    (2)

(4.6.6)
31 cantitruncated order-5 dodecahedral

t0,1,2{5,3,5}
(1)

(4.6.6)
(1)

(4.4.5)
  (2)

(4.6.10)
32 runcitruncated order-5 dodecahedral

t0,1,3{5,3,5}
(1)

(3.5.4.5)
(1)

(4.4.5)
(2)

(4.4.10)
(1)

(3.10.10)
33 omnitruncated order-5 dodecahedral

t0,1,2,3{5,3,5}
(1)

(4.6.10)
(1)

(4.4.10)
(1)

(4.4.10)
(1)

(4.6.10)

[5,31,1] family

There are 11 forms (4 of which are not seen above), generated by ring permutations of the Coxeter group: [5,31,1] or

# Honeycomb name
Coxeter–Dynkin diagram
Cells by location
(and count around each vertex)
vertex figure Picture
0
1
0'
3
34 alternated order-5 cubic
    (12)

(3.3.3.3)
(20)

(3.3.3)
35 truncated alternated order-5 cubic
(1)

(3.5.3.5)
  (2)

(5.6.6)
(2)

(3.6.6)
[11] rectified order-4 dodecahedral
(rectified alternated order-5 cubic)
(2)

(3.5.3.5)
  (2)

(3.5.3.5)
(2)

(3.3.3.3)
[12] rectified order-5 cubic
(cantellated alternated order-5 cubic)
(1)

(3.3.3.3.3)
  (1)

(3.3.3.3.3)
(5)

(3.4.3.4)
[15] bitruncated order-5 cubic
(cantitruncated alternated order-5 cubic)
(1)

(5.6.6)
  (1)

(5.6.6)
(2)

(4.6.6)
[14] truncated order-4 dodecahedral
(bicantellated alternated order-5 cubic)
(2)

(3.10.10)
  (2)

(3.10.10)
(1)

(3.3.3.3)
[10] Order-4 dodecahedral
(trirectified alternated order-5 cubic)
(4)

(5.5.5)
  (4)

(5.5.5)
 
36 runcinated alternated order-5 cubic
(1)

(3.3.3)
  (3)

(3.4.4.4)
(1)

(3.3.3)
[17] cantellated order-4 dodecahedral
(runcicantellated alternated order-5 cubic)
(1)

(3.4.5.4)
(2)

(4.4.4)
(1)

(3.4.5.4)
(1)

(3.4.3.4)
37 runcitruncated alternated order-5 cubic
(1)

(3.10.10)
  (2)

(4.6.10)
(1)

(3.6.6)
[20] cantitruncated order-4 dodecahedral
(omnitruncated alternated order-5 cubic)
(1)

(4.6.10)
(1)

(4.4.4)
(1)

(4.6.10)
(1)

(4.6.6)

[(4,3,3,3)] family

There are 9 forms, generated by ring permutations of the Coxeter group:

# Honeycomb name
Coxeter–Dynkin
diagram
Cells by location
(and count around each vertex)
vertex figure
0
1
2
3
38 (4)

(3.3.3)
- (4)

(4.4.4)
(6)

(3.4.3.4)
39 (12)

(3.3.3.3)
(8)

(3.3.3)
- (8)

(3.3.3.3)
40 (3)

(3.6.6)
(1)

(3.3.3)
(1)

(4.4.4)
(3)

(4.6.6)
41 (1)

(3.3.3)
(1)

(3.3.3)
(3)

(3.8.8)
(3)

(3.8.8)
42 (4)

(3.6.6)
(4)

(3.6.6)
(1)

(3.3.3.3)
(1)

(3.3.3.3)
43 (1)

(3.3.3.3)
(2)

(3.4.3.4)
(1)

(3.4.3.4)
(2)

(3.4.4.4)
44 (1)

(3.6.6)
(1)

(3.4.3.4)
(1)

(3.8.8)
(2)

(4.6.8)
45 (2)

(4.6.6)
(1)

(3.6.6)
(1)

(3.4.4.4)
(1)

(4.6.6)
46 (1)

(4.6.6)
(1)

(4.6.6)
(1)

(4.6.8)
(1)

(4.6.8)

[(5,3,3,3)] family

There are 9 forms, generated by ring permutations of the Coxeter group:

# Honeycomb name
Coxeter–Dynkin
diagram
Cells by location
(and count around each vertex)
vertex figure
0
1
2
3
47 (4)

(3.3.3)
- (4)

(5.5.5)
(6)

(3.5.3.5)
48 (30)

(3.3.3.3)
(20)

(3.3.3)
- (12)

(3.3.3.3.3)
49 (3)

(3.6.6)
(1)

(3.3.3)
(1)

(5.5.5)
(3)

(5.6.6)
50 (1)

(3.3.3)
(1)

(3.3.3)
(3)

(3.10.10)
(3)

(3.10.10)
51 (5)

(3.6.6)
(5)

(3.6.6)
(1)

(3.3.3.3.3)
(1)

(3.3.3.3.3)
52 (1)

(3.3.3.3)
(2)

(3.4.3.4)
(1)

(3.5.3.5)
(2)

(3.4.5.4)
53 (1)

(3.6.6)
(1)

(3.4.3.4)
(1)

(3.10.10)
(2)

(4.6.10)
54 (2)

(4.6.6)
(1)

(3.6.6)
(1)

(3.4.5.4)
(1)

(5.6.6)
55 (1)

(4.6.6)
(1)

(4.6.6)
(1)

(4.6.10)
(1)

(4.6.10)

[(4,3,4,3)] family

There are 6 forms, generated by ring permutations of the Coxeter group:

# Honeycomb name
Coxeter–Dynkin
diagram
Cells by location
(and count around each vertex)
vertex figure
0
1
2
3
56 (6)

(3.3.3.3)
- (8)

(4.4.4)
(12)

(3.4.3.4)
57 (3)

(4.6.6)
(1)

(4.4.4)
(1)

(4.4.4)
(3)

(4.6.6)
58 (1)

(3.3.3.3)
(1)

(3.3.3.3)
(3)

(3.8.8)
(3)

(3.8.8)
59 (1)

(3.4.3.4)
(2)

(3.4.4.4)
(1)

(3.4.3.4)
(2)

(3.4.4.4)
60 (1)

(4.6.6)
(1)

(3.4.4.4)
(1)

(3.8.8)
(2)

(4.6.8)
61 (1)

(4.6.8)
(1)

(4.6.8)
(1)

(4.6.8)
(1)

(4.6.8)

[(4,3,5,3)] family

There are 9 forms, generated by ring permutations of the Coxeter group:

# Honeycomb name
Coxeter–Dynkin
diagram
Cells by location
(and count around each vertex)
vertex figure
0
1
2
3
62 (6)

(3.3.3.3)
- (8)

(5.5.5)
(1)

(3.5.3.5)
63 (30)

(3.4.3.4)
(20)

(4.4.4)
- (12)

(3.3.3.3.3)
64 (3)

(4.6.6)
(1)

(4.4.4)
(1)

(5.5.5)
(3)

(5.6.6)
65 (1)

(3.3.3.3)
(1)

(3.3.3.3)
(4)

(3.10.10)
(4)

(3.10.10)
66 (5)

(3.8.8)
(5)

(3.8.8)
(1)

(3.3.3.3.3)
(1)

(3.3.3.3.3)
67 (1)

(3.4.3.4)
(2)

(3.4.4.4)
(1)

(3.5.3.5)
(2)

(3.4.5.4)
68 (1)

(4.6.6)
(1)

(3.4.4.4)
(1)

(3.10.10)
(2)

(4.6.10)
69 (2)

(4.6.8)
(1)

(3.8.8)
(1)

(3.4.5.4)
(1)

(5.6.6)
70 (1)

(4.6.8)
(1)

(4.6.8)
(1)

(4.6.10)
(1)

(4.6.10)

[(5,3,5,3)] family

There are 6 forms, generated by ring permutations of the Coxeter group:

# Honeycomb name
Coxeter–Dynkin
diagram
Cells by location
(and count around each vertex)
vertex figure
0
1
2
3
71 (12)

(3.3.3.3.3)
- (20)

(5.5.5)
(30)

(3.5.3.5)
72 (3)

(5.6.6)
(1)

(5.5.5)
(1)

(5.5.5)
(3)

(5.6.6)
73 (1)

(3.3.3.3.3)
(1)

(3.3.3.3.3)
(3)

(3.10.10)
(3)

(3.10.10)
74 (1)

(3.5.3.5)
(2)

(3.4.5.4)
(1)

(3.5.3.5)
(2)

(3.4.5.4)
75 (1)

(5.6.6)
(1)

(3.4.5.4)
(1)

(3.10.10)
(2)

(4.6.10)
76 (1)

(4.6.10)
(1)

(4.6.10)
(1)

(4.6.10)
(1)

(4.6.10)

See also

Notes

  1. ^ Humphreys, 1990, page 141, 6.9 List of hyperbolic Coxeter groups, figure 2 [1]
  2. ^ Wendy Y. Krieger, Walls and bridges: The view from six dimensions, Symmetry: Culture and Science Volume 16, Number 2, pages 171-192 (2005) [2]

References