In mathematics, convergence tests are methods of testing for the convergence, conditional convergence, absolute convergence, interval of convergence or divergence of an infinite series.
Contents |
The root test is stronger than the ratio test (it is more powerful because the required condition is weaker): whenever the ratio test determines the convergence or divergence of an infinite series, the root test does too, but not conversely.[1]
For example, for the series
convergence follows from the root test but not from the ratio test.
Consider the series
.
Cauchy condensation test implies that (*) is finitely convergent if
is finitely convergent. Since
(**) is geometric series with ratio . (**) is finitely convergent if its ratio is less than one (namely ). Thus, (*) is finitely convergent if and only if .
While most of the tests deal with the convergence of infinite series, they can also be used to show the convergence or divergence of infinite products. This can be achieved using following theorem: Let be a sequence of positive numbers. Then the infinite product converges if and only if the series converges. Also similarly, if holds, then approaches a non-zero limit if and only if the series converges .
This can be proved by taking logarithm of the product and using limit comparison test.[2]