Calnexin

Calnexin

Lumenal domain of calnexin from PDB 1JHN.
Identifiers
Symbols CANX; CNX; FLJ26570; IP90; P90
External IDs OMIM114217 MGI88261 HomoloGene1324 GeneCards: CANX Gene
RNA expression pattern
More reference expression data
Orthologs
Species Human Mouse
Entrez 821 12330
Ensembl ENSG00000127022 ENSMUSG00000020368
UniProt P27824 Q3TXE5
RefSeq (mRNA) NM_001024649.1 NM_007597
RefSeq (protein) NP_001019820.1 NP_031623
Location (UCSC) Chr 5:
179.11 – 179.16 Mb
Chr 11:
50.11 – 50.14 Mb
PubMed search [1] [2]

Calnexin (CNX) is a 90kDa integral protein of the endoplasmic reticulum (ER). It consists of a large (50 kDa) N-terminal calcium-binding lumenal domain, a single transmembrane helix and a short (90 residues), acidic cytoplasmic tail.

Calnexin is one of the chaperone molecules, which are characterized by their main function of assisting protein folding and quality control, ensuring that only properly folded and assembled proteins proceed further along the secretory pathway.

The function of calnexin is to retain unfolded or unassembled N-linked glycoproteins in the endoplasmic reticulum.

Calnexin binds only those N-glycoproteins that have GlcNAc2Man9Glc1 oligosaccharides.

Oligosaccharides with three sequential glucose residues are added to asparagine residues of the nascent proteins in the ER.

The monoglucosylated oligosaccharides that are recognized by calnexin result from the trimming of two glucose residues by the sequential action of two glucosidases, I and II. Glucosidase II can also remove the third and last glucose residue.

If the glycoprotein is not properly folded, an enzyme called UGGT (for UDP-glucose:glycoprotein glucosyltransferase) will add the glucose residue back onto the oligosaccharide thus regenerating the glycoprotein's ability to bind to calnexin.

The improperly-folded glycoprotein chain thus loiters in the ER, risking the encounter with MNS1 (alpha-mannosidase), which eventually sentences the underperforming glycoprotein to degradation by removing its mannose residue.

If the protein is correctly translated, the chance of it being correctly folded before it encounters MNS1 is high.

ATP and calcium ions are two of the cofactors involved in substrate binding for calnexin.

Calnexin also functions as a chaperone for the folding of MHC class I alpha chain in the membrane of the ER. After folding is completed Calnexin is replaced by Calreticulin, which assists in further assembly of MHC class I.

External links

Further reading