Caesium (Cs) has 40 known isotopes. The atomic masses of these isotopes range from 112 to 151. Only one isotope, 133Cs, is stable. The longest-lived radioisotopes are 135Cs with a half-life of 2.3 million years, 137Cs with a half-life of 30.1671 years and 134Cs with a half-life of 2.0652 years. All other isotopes have half-lives less than 2 weeks, most under an hour.
Beginning in 1945 with the commencement of nuclear testing, caesium isotopes were released into the atmosphere where it is absorbed readily into solution and is returned to the surface of the earth as a component of radioactive fallout. Once caesium enters the ground water, it is deposited on soil surfaces and removed from the landscape primarily by particle transport. As a result, the input function of these isotopes can be estimated as a function of time.
Standard atomic mass: 132.9054519(2) u
Contents |
Caesium-133 is the only naturally occurring and only stable isotope of caesium. It is also produced by nuclear fission in nuclear reactors. One specific quantum transition in the Caesium-133 atom is used to define the second, a unit of time.
Caesium-134 has a half-life of 2.0652 years. It is produced both directly (at a very small yield because 134Xe is stable) as a fission product and via neutron capture from nonradioactive Cs-133 (neutron capture cross section 29 barns), which is a common fission product. Caesium 134 is not produced via beta decay of other fission product nuclides of mass 134 since beta decay stops at stable 134Xe. It is also not produced by nuclear weapons because 133Cs is created by beta decay of original fission products only long after the nuclear explosion is over.
The combined yield of 133Cs and 134Cs is given as 6.7896%. The proportion between the two will change with continued neutron irradiation. 134Cs also captures neutrons with a cross section of 140 barns, becoming long-lived radioactive 135Cs.
Prop: Unit: |
t½ Ma |
Yield % |
Q * KeV |
βγ * |
---|---|---|---|---|
99Tc | 0.211 | 6.1385 | 294 | β |
126Sn | 0.230 | 0.1084 | 4050 | βγ |
79Se | 0.327 | 0.0447 | 151 | β |
93Zr | 1.53 | 5.4575 | 91 | βγ |
135Cs | 2.3 | 6.9110 | 269 | β |
107Pd | 6.5 | 1.2499 | 33 | β |
129I | 15.7 | 0.8410 | 194 | βγ |
Caesium-135 is a mildly radioactive isotope of caesium, undergoing low-energy beta decay to barium-135 with a half-life of 2.3 million years. It is one of the 7 long-lived fission products and the only alkaline one. In nuclear reprocessing, it stays with Cs-137 and other medium-lived fission products rather than with other long-lived fission products. The low decay energy, lack of gamma radiation, and long half-life of 135Cs make this isotope much less hazardous than 137Cs or 134Cs.
Its precursor 135Xe has a high fission product yield (e.g. 6.3333% for 235U and thermal neutrons) but also has the highest known thermal neutron neutron capture cross section of any nuclide. Because of this, much of the 135Xe produced in current thermal reactors (as much as >90% at steady-state full power)[1] will be converted to stable 136Xe before it can decay to 135Cs. Little or no 135Xe will be destroyed by neutron capture after a reactor shutdown, or in a molten salt reactor that continuously removes xenon from its fuel, a fast neutron reactor, or a nuclear weapon.
A nuclear reactor will also produce much smaller amounts of 135Cs from the nonradioactive fission product Cs-133 by successive neutron capture to 134Cs and then 135Cs.
The thermal neutron capture cross section and resonance integral of 135Cs are 8.3 ± 0.3 and 38.1 ± 2.6 barns respectively.[2] Disposal of Cs-135 by nuclear transmutation is difficult, because of the low cross section as well as because neutron irradiation of mixed-isotope fission caesium produces more Cs-135 from stable Cs-133. In addition, the intense medium-term radioactivity of Cs-137 makes handling of nuclear waste difficult.[3]
137Cs with a half-life of 30.17 years is one of the two principal medium-lived fission products, along with 90Sr, which are responsible for most of the radioactivity of spent nuclear fuel after several years of cooling, up to several hundred years after use. It constitutes most of the radioactivity still left from the Chernobyl accident. 137Cs beta decays to barium-137m (a short-lived nuclear isomer) then to nonradioactive barium-137, and is also a strong emitter of gamma radiation. 137Cs has a very low rate of neutron capture and cannot be feasibly disposed of in this way, but must be allowed to decay. 137Cs has been used as a tracer in hydrologic studies, analogous to the use of 3H.
The other isotopes have half-lives from a few days to fractions of a second. Almost all caesium produced from nuclear fission comes from beta decay of originally more neutron-rich fission products, passing through isotopes of iodine then isotopes of xenon. Because these elements are volatile and can diffuse through nuclear fuel or air, caesium is often created far from the original site of fission.
nuclide symbol |
Z(p) | N(n) | isotopic mass (u) |
half-life | decay mode(s)[4][n 1] |
daughter isotope(s)[n 2] |
nuclear spin |
representative isotopic composition (mole fraction) |
range of natural variation (mole fraction) |
---|---|---|---|---|---|---|---|---|---|
excitation energy | |||||||||
112Cs | 55 | 57 | 111.95030(33)# | 500(100) µs | p | 111Xe | 1+# | ||
α | 108I | ||||||||
113Cs | 55 | 58 | 112.94449(11) | 16.7(7) µs | p (99.97%) | 112Xe | 5/2+# | ||
β+ (.03%) | 113Xe | ||||||||
114Cs | 55 | 59 | 113.94145(33)# | 0.57(2) s | β+ (91.09%) | 114Xe | (1+) | ||
β+, p (8.69%) | 113I | ||||||||
β+, α (.19%) | 110Te | ||||||||
α (.018%) | 110I | ||||||||
115Cs | 55 | 60 | 114.93591(32)# | 1.4(8) s | β+ (99.93%) | 115Xe | 9/2+# | ||
β+, p (.07%) | 114I | ||||||||
116Cs | 55 | 61 | 115.93337(11)# | 0.70(4) s | β+ (99.67%) | 116Xe | (1+) | ||
β+, p (.279%) | 115I | ||||||||
β+, α (.049%) | 112Te | ||||||||
116mCs | 100(60)# keV | 3.85(13) s | β+ (99.48%) | 116Xe | 4+,5,6 | ||||
β+, p (.51%) | 115I | ||||||||
β+, α (.008%) | 112Te | ||||||||
117Cs | 55 | 62 | 116.92867(7) | 8.4(6) s | β+ | 117Xe | (9/2+)# | ||
117mCs | 150(80)# keV | 6.5(4) s | β+ | 117Xe | 3/2+# | ||||
118Cs | 55 | 63 | 117.926559(14) | 14(2) s | β+ (99.95%) | 118Xe | 2 | ||
β+, p (.042%) | 117I | ||||||||
β+, α (.0024%) | 114Te | ||||||||
118mCs | 100(60)# keV | 17(3) s | β+ (99.95%) | 118Xe | (7-) | ||||
β+, p (.042%) | 117I | ||||||||
β+, α (.0024%) | 114Te | ||||||||
119Cs | 55 | 64 | 118.922377(15) | 43.0(2) s | β+ | 119Xe | 9/2+ | ||
β+, α (2×10−6%) | 115Te | ||||||||
119mCs | 50(30)# keV | 30.4(1) s | β+ | 119Xe | 3/2(+) | ||||
120Cs | 55 | 65 | 119.920677(11) | 61.2(18) s | β+ | 120Xe | 2(-#) | ||
β+, α (2×10−5%) | 116Te | ||||||||
β+, p (7×10−6%) | 118I | ||||||||
120mCs | 100(60)# keV | 57(6) s | β+ | 120Xe | (7-) | ||||
β+, α (2×10−5%) | 116Te | ||||||||
β+, p (7×10−6%) | 118I | ||||||||
121Cs | 55 | 66 | 120.917229(15) | 155(4) s | β+ | 121Xe | 3/2(+) | ||
121mCs | 68.5(3) keV | 122(3) s | β+ (83%) | 121Xe | 9/2(+) | ||||
IT (17%) | 121Cs | ||||||||
122Cs | 55 | 67 | 121.91611(3) | 21.18(19) s | β+ | 122Xe | 1+ | ||
β+, α (2×10−7%) | 118Te | ||||||||
122m1Cs | 45.8 keV | >1 µs | (3)+ | ||||||
122m2Cs | 140(30) keV | 3.70(11) min | β+ | 122Xe | 8- | ||||
122m3Cs | 127.0(5) keV | 360(20) ms | (5)- | ||||||
123Cs | 55 | 68 | 122.912996(13) | 5.88(3) min | β+ | 123Xe | 1/2+ | ||
123m1Cs | 156.27(5) keV | 1.64(12) s | IT | 123Cs | (11/2)- | ||||
123m2Cs | 231.63+X keV | 114(5) ns | (9/2+) | ||||||
124Cs | 55 | 69 | 123.912258(9) | 30.9(4) s | β+ | 124Xe | 1+ | ||
124mCs | 462.55(17) keV | 6.3(2) s | IT | 124Cs | (7)+ | ||||
125Cs | 55 | 70 | 124.909728(8) | 46.7(1) min | β+ | 125Xe | 1/2(+) | ||
125mCs | 266.6(11) keV | 900(30) ms | (11/2-) | ||||||
126Cs | 55 | 71 | 125.909452(13) | 1.64(2) min | β+ | 126Xe | 1+ | ||
126m1Cs | 273.0(7) keV | >1 µs | |||||||
126m2Cs | 596.1(11) keV | 171(14) µs | |||||||
127Cs | 55 | 72 | 126.907418(6) | 6.25(10) h | β+ | 127Xe | 1/2+ | ||
127mCs | 452.23(21) keV | 55(3) µs | (11/2)- | ||||||
128Cs | 55 | 73 | 127.907749(6) | 3.640(14) min | β+ | 128Xe | 1+ | ||
129Cs | 55 | 74 | 128.906064(5) | 32.06(6) h | β+ | 129Xe | 1/2+ | ||
130Cs | 55 | 75 | 129.906709(9) | 29.21(4) min | β+ (98.4%) | 130Xe | 1+ | ||
β- (1.6%) | 130Ba | ||||||||
130mCs | 163.25(11) keV | 3.46(6) min | IT (99.83%) | 130Cs | 5- | ||||
β+ (.16%) | 130Xe | ||||||||
131Cs | 55 | 76 | 130.905464(5) | 9.689(16) d | EC | 131Xe | 5/2+ | ||
132Cs | 55 | 77 | 131.9064343(20) | 6.480(6) d | β+ (98.13%) | 132Xe | 2+ | ||
β- (1.87%) | 132Ba | ||||||||
133Cs[n 3][n 4] | 55 | 78 | 132.905451933(24) | Observationally Stable[n 5] | 7/2+ | 1.0000 | |||
134Cs[n 4] | 55 | 79 | 133.906718475(28) | 2.0652(4) a | β- | 134Ba | 4+ | ||
EC (3×10−4%) | 134Xe | ||||||||
134mCs | 138.7441(26) keV | 2.912(2) h | IT | 134Cs | 8- | ||||
135Cs[n 4] | 55 | 80 | 134.9059770(11) | 2.3(3)×106 a | β- | 135Ba | 7/2+ | ||
135mCs | 1632.9(15) keV | 53(2) min | IT | 135Cs | 19/2- | ||||
136Cs | 55 | 81 | 135.9073116(20) | 13.16(3) d | β- | 136Ba | 5+ | ||
136mCs | 518(5) keV | 19(2) s | β- | 136Ba | 8- | ||||
IT | 136Cs | ||||||||
137Cs[n 4] | 55 | 82 | 136.9070895(5) | 30.1671(13) a | β- (95%) | 137mBa | 7/2+ | ||
β- (5%) | 137Ba | ||||||||
138Cs | 55 | 83 | 137.911017(10) | 33.41(18) min | β- | 138Ba | 3- | ||
138mCs | 79.9(3) keV | 2.91(8) min | IT (81%) | 138Cs | 6- | ||||
β- (19%) | 138Ba | ||||||||
139Cs | 55 | 84 | 138.913364(3) | 9.27(5) min | β- | 139Ba | 7/2+ | ||
140Cs | 55 | 85 | 139.917282(9) | 63.7(3) s | β- | 140Ba | 1- | ||
141Cs | 55 | 86 | 140.920046(11) | 24.84(16) s | β- (99.96%) | 141Ba | 7/2+ | ||
β-, n (.0349%) | 140Ba | ||||||||
142Cs | 55 | 87 | 141.924299(11) | 1.689(11) s | β- (99.9%) | 142Ba | 0- | ||
β-, n (.091%) | 141Ba | ||||||||
143Cs | 55 | 88 | 142.927352(25) | 1.791(7) s | β- (98.38%) | 143Ba | 3/2+ | ||
β-, n (1.62%) | 142Ba | ||||||||
144Cs | 55 | 89 | 143.932077(28) | 994(4) ms | β- (96.8%) | 144Ba | 1(-#) | ||
β-, n (3.2%) | 143Ba | ||||||||
144mCs | 300(200)# keV | <1 s | β- | 144Ba | (>3) | ||||
IT | 144Cs | ||||||||
145Cs | 55 | 90 | 144.935526(12) | 582(6) ms | β- (85.7%) | 145Ba | 3/2+ | ||
β-, n (14.3%) | 144Ba | ||||||||
146Cs | 55 | 91 | 145.94029(8) | 0.321(2) s | β- (85.8%) | 146Ba | 1- | ||
β-, n (14.2%) | 145Ba | ||||||||
147Cs | 55 | 92 | 146.94416(6) | 0.235(3) s | β- (71.5%) | 147Ba | (3/2+) | ||
β-, n (28.49%) | 147Ba | ||||||||
148Cs | 55 | 93 | 147.94922(62) | 146(6) ms | β- (74.9%) | 148Ba | |||
β-, n (25.1%) | 147Ba | ||||||||
149Cs | 55 | 94 | 148.95293(21)# | 150# ms [>50 ms] | β- | 149Ba | 3/2+# | ||
β-, n | 148Ba | ||||||||
150Cs | 55 | 95 | 149.95817(32)# | 100# ms [>50 ms] | β- | 150Ba | |||
β-, n | 149Ba | ||||||||
151Cs | 55 | 96 | 150.96219(54)# | 60# ms [>50 ms] | β- | 151Ba | 3/2+# | ||
β-, n | 150Ba |
Isotopes of xenon | Isotopes of caesium | Isotopes of barium |
Index to isotope pages · Table of nuclides |