Braikenridge–Maclaurin theorem

In geometry, the Braikenridge–Maclaurin theorem, named for 18th century British mathematicians William Braikenridge and Colin Maclaurin (Mills 1984), is the converse to Pascal's theorem. It states that if the 3 intersection points of the lines through three sides of a hexagon lie on a line, then the 6 vertices of the hexagon lie on a conic; the conic may be degenerate, as in Pappus's theorem. (Coxeter & Greitzer 1967, p. 76). The Braikenridge–Maclaurin theorem may be applied in the Braikenridge–Maclaurin construction, which is a synthetic construction of the conic defined by five points, by varying the sixth point. Namely, Pascal's theorem states that given 6 points on a conic (a hexagon), the lines defined by opposite sides intersect in three collinear points. This can be reversed to construct the possible locations for a 6th point, given 5 existing ones.

The theorem was generalized by Möbius in 1847, as follows: suppose a polygon with 4n + 2 sides is inscribed in a conic section, and opposite pairs of sides are extended until they meet in 2n + 1 points. Then if 2n of those points lie on a common line, the last point will be on that line, too.

References