Benthic zone

Marine habitats

Microphotograph of typical benthic animals

Littoral zone
Intertidal zone
Estuaries
Kelp forests
Coral reefs
Ocean banks
Continental shelf
Neritic zone
Straits
Pelagic zone
Oceanic zone
Seamounts
Hydrothermal vents
Cold seeps
Demersal zone
Benthic zone

The benthic zone is the ecological region at the lowest level of a body of water such as an ocean or a lake, including the sediment surface and some sub-surface layers. Organisms living in this zone are called benthos. They generally live in close relationship with the substrate bottom; many such organisms are permanently attached to the bottom. The superficial layer of the soil lining the given body of water, the benthic boundary layer, is an integral part of the benthic zone, as it influences greatly the biological activity which takes place there. Examples of contact soil layers include sand bottoms, rocky outcrops, coral, and bay mud.

Contents

Description

The benthic region begins at the shore line (intertidal or eulittoral zone) and extends downward along the surface of the continental shelf out to sea. The continental shelf is a gently sloping benthic region that extends away from the land mass. At the continental shelf edge, usually about 200 meters deep, the gradient greatly increases and is known as the continental slope. The continental slope drops down to the deep sea floor. The deep-sea floor is called the abyssal plain and is usually about 4000 meters deep. The ocean floor is not all flat but has submarine ridges and deep ocean trenches known as the hadal zone.

For comparison, the pelagic zone is the descriptive term for the ecological region above the benthos, including the water-column up to the surface. Depending on the water-body, the benthic zone may include areas which are only a few inches below water, such as a stream or shallow pond; at the other end of the spectrum, benthos of the deep ocean includes the bottom levels of the oceanic abyssal zone.

For information on animals that live in the deeper areas of the oceans see aphotic zone. Generally, these include life forms that tolerate cool temperatures and low oxygen levels, but this depends on the depth of the water.

Organisms

Benthos are the organisms which live in the benthic zone, and are different from those elsewhere in the water column. Many are adapted to live on the substrate (bottom). In their habitats they can be considered as dominant creatures. Many organisms adapted to deep-water pressure cannot survive in the upper parts of the water column. The pressure difference can be very significant (approximately one atmosphere for each 10 meters of water depth).

Because light does not penetrate very deep ocean-water, the energy source for the benthic ecosystem is often organic matter from higher up in the water column which drifts down to the depths. This dead and decaying matter sustains the benthic food chain; most organisms in the benthic zone are scavengers or detritivores. Some microorganisms use chemosynthesis to produce biomass.

Benthic organisms can be divided into two categories based on whether they make their home on the ocean floor or an inch or two into the ocean floor. Those living on the surface of the ocean floor are known as epifauna.[1] Those who live burrowed into the ocean floor are known as infauna.[2]

Habitats

In oceanic environments, benthic habitats can be further zoned by depth. From the shallowest to the deepest are: the epipelagic (less than 200 meters), the mesopelagic (200–1000 metres), the bathyal (1000–4000 meters), the abyssal (4000–6000 meters) and the deepest, the hadal (below 6000 meters).

The lower zones are in deep, pressurized areas of the ocean. Because of the high pressures and seclusion neither tidal changes nor human impacts have had much of an effect on these areas, and the habitats have not changed much over the years. Many benthic organisms have retained their historic evolutionary characteristics. Some organisms are significantly larger than their relatives living in shallower zones, largely because of higher oxygen concentration in deep water.[3]

It is not easy to map or observe these organisms and their habitats, and most observation has been done through remote controlled submarines.

See also

References

External links