Boron trioxide | |
---|---|
Other names
boron oxide, diboron trioxide, boron sesquioxide, boric oxide, boria |
|
Identifiers | |
CAS number | 1303-86-2 |
PubChem | 518682 |
ChemSpider | 452485 |
ChEBI | CHEBI:30163 |
RTECS number | ED7900000 |
Jmol-3D images | Image 1 |
|
|
|
|
Properties | |
Molecular formula | B2O3 |
Molar mass | 69.6182 g/mol |
Appearance | white, glassy solid |
Density | 2.460 g/cm3, liquid; 2.55 g/cm3, trigonal; |
Melting point |
450 °C (trigonal) |
Boiling point | |
Solubility in water | 22 g/L |
Solubility | partially soluble in methanol |
Acidity (pKa) | ~ 4 |
Hazards | |
MSDS | External MSDS |
EU classification | Repr. Cat. 2 |
NFPA 704 |
0
1
0
|
LD50 | 3150 mg/kg (oral, rat) |
Supplementary data page | |
Structure and properties |
n, εr, etc. |
Thermodynamic data |
Phase behaviour Solid, liquid, gas |
Spectral data | UV, IR, NMR, MS |
(verify) (what is: / ?) Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa) |
|
Infobox references |
Boron trioxide (or diboron trioxide) is one of the oxides of boron. It is a white, glassy solid with the formula B2O3. It is almost always found as the vitreous (amorphic) form; however, it can be crystallized after extensive annealing. It is one of the most difficult compounds known to crystallize.
Glassy boron oxide (g-B2O3) is thought to be composed of boroxol rings which are six-membered rings composed of alternating 3-coordinate boron and 2-coordinate oxygen. This view is controversial, however, because no model has ever been made of glassy boron oxide of the correct density containing a large number of six-membered rings. The rings are thought to make a few BO3 triangles, but mostly link (polymerize) into ribbons and sheets.[3][4] The crystalline form (α-B2O3) see structure in the infobox[5]) is exclusively composed of BO3 triangles. This trigonal, quartz-like network undergoes a coesite-like transformation to monoclinic β-B2O3 at several gigapascals and is 9.5 GPa.[6]
Contents |
Boron trioxide is produced by treating borax with sulfuric acid in a fusion furnace. At temperatures above 750 °C, the molten boron oxide layer separates out from sodium sulfate. It is then decanted, cooled and obtained in 96–97% purity.[2]
Another method is heating boric acid above ~300 °C. Boric acid will initially decompose into water steam and metaboric acid (HBO2) at around 170 °C, and further heating above 300 °C will produce more steam and boron trioxide. The reactions are:
Boric acid goes to anhydrous microcrystalline B2O3 in a heated fluidized bed.[7] Carefully controlled heating rate avoids gumming as water evolves. Molten boron oxide attacks silicates. Internally graphitized tubes via acetylene thermal decomposition are passivated.[8]
Crystallization of molten α-B2O3 at ambient pressure is strongly kinetically disfavored (compare liquid and crystal densities). Threshold conditions for crystallization of the amorphous solid are 10 kbar and ~200 °C.[9] Its proposed crystal structure in enantiomorphic space groups P31(#144); P32(#145)[10][11] (e.g., γ-glycine) has been revised to enantiomorphic space groups P3121(#152); P3221(#154)[12](e.g., α-quartz).
The bulk modulus of β-B2O3 is rather high (K = 180 GPa). The Vickers hardness of g-B2O3 is 1.5 GPa and of β-B2O3 is 16 GPa.[13]
|