In computation theory, the Blum–Shub–Smale machine, or BSS machine, is a model of computation introduced by Lenore Blum, Michael Shub and Stephen Smale, intended to describe computations over the real numbers. Essentially, a BSS machine is a Random Access Machine with registers that can store arbitrary real numbers and that can compute rational functions over reals at unit cost.
A BSS machine M is given by the set of instructions, indexed . A configuration of M is a tuple , where k is the number of the instruction currently executed, r and w are copy registers and x stores the content of all registers of M. The computation begins with configuration and ends whenever – the content of x is said to be the output of the machine.
The instructions of M can be of the following types: