Benzoic acid

Benzoic acid

Benzoic acid crystals
Identifiers
CAS number 65-85-0 Y
PubChem 243
ChemSpider 238 Y
UNII 8SKN0B0MIM Y
EC number 200-618-2
DrugBank DB03793
KEGG D00038 Y
MeSH benzoic+acid
ChEBI CHEBI:30746 Y
ChEMBL CHEMBL541 Y
RTECS number DG0875000
Beilstein Reference 636131
Gmelin Reference 2946
3DMet B00053
Jmol-3D images Image 1
Image 2
Properties
Molecular formula C7H6O2
Molar mass 122.12 g mol−1
Appearance Colorless crystalline solid
Density 1.27 g/cm3[1]
Melting point

122.38 °C, 396 K, 252 °F (source[2])

Boiling point

250 °C, 523 K, 482 °F ([1])

Solubility in water 2.9 g/L[1]
Acidity (pKa) 4.21
Refractive index (nD) 1.5397
Structure
Crystal structure Monoclinic
Molecular shape planar
Dipole moment 1.72 D in Dioxane
Hazards
MSDS JT Baker
EU Index Not listed
Main hazards Irritating
NFPA 704
1
2
0
Flash point 121.5 °C (250.7 °F)[1]
Autoignition
temperature
570 °C (1,058 °F)[1]
Related compounds
Related carboxylic acids Hydroxybenzoic acids
Aminobenzoic acids,
Nitrobenzoic acids,
Phenylacetic acid
Related compounds Benzaldehyde,
Benzyl alcohol,
Benzoyl chloride,
Benzylamine,
Benzamide
 Y (verify) (what is: Y/N?)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa)
Infobox references

Benzoic acid (pronunciation: /bɛnˈz.ɪk/), C7H6O2 (or C6H5COOH), is a colorless crystalline solid and the simplest aromatic carboxylic acid. The name derived from gum benzoin, which was for a long time the only source for benzoic acid. Its salts are used as a food preservative and benzoic acid is an important precursor for the synthesis of many other organic substances. The salts and esters of benzoic acid are known as benzoates (pronunciation: /ˈbɛnz.t/).

Contents

History

Benzoic acid was discovered in the sixteenth century. The dry distillation of gum benzoin was first described by Nostradamus (1556), and subsequently by Alexius Pedemontanus (1560) and Blaise de Vigenère (1596).[3]

Pioneer work in 1830 through a variety of experiences based on amygdalin, obtained from bitter almonds (the fruit of Prunus dulcis) oil by Pierre Robiquet and Antoine Boutron-Charlard, two French chemists, had produced benzaldehyde [4] but they failed in working out a proper interpretation of the structure of amygdalin that would account for it, and thus missed the identification of the benzoyl radical C7H5O. This last step was achieved some few months later (1832) by Justus von Liebig and Friedrich Wöhler, who determined the composition of benzoic acid.[5] These latter also investigated how hippuric acid is related to benzoic acid.

In 1875 Salkowski discovered the antifungal abilities of benzoic acid, which was used for a long time in the preservation of benzoate-containing cloudberry fruits.[6]

Production

Industrial preparations

Benzoic acid is produced commercially by partial oxidation of toluene with oxygen. The process is catalyzed by cobalt or manganese naphthenates. The process uses cheap raw materials, proceeds in high yield, and is considered environmentally green.

U.S. production capacity is estimated to be 126,000 tonnes per year (139,000 tons), much of which is consumed domestically to prepare other industrial chemicals.

Laboratory synthesis

Benzoic acid is cheap and readily available, so the laboratory synthesis of benzoic acid is mainly practiced for its pedagogical value. It is a common undergraduate preparation.

For all syntheses, benzoic acid can be purified by recrystallization from water because of its high solubility in hot water and poor solubility in cold water. The avoidance of organic solvents for the recrystallization makes this experiment particularly safe. Other possible recrystallization solvents include acetic acid (anhydrous or aqueous), benzene, acetone, petroleum ether, and a mixture of ethanol and water.[7]

By hydrolysis

Like any other nitrile or amide, benzonitrile and benzamide can be hydrolyzed to benzoic acid or its conjugate base in acid or basic conditions.

From benzaldehyde

The base-induced disproportionation of benzaldehyde, the Cannizzaro reaction, affords equal amounts of benzoate and benzyl alcohol; the latter can be removed by distillation.

From bromobenzene

Bromobenzene can be converted to benzoic acid by "carbonation" of the intermediate phenylmagnesium bromide:[8]

C6H5MgBr + CO2 → C6H5CO2MgBr
C6H5CO2MgBr + HCl → C6H5CO2H + MgBrCl

From benzyl alcohol

Benzyl alcohol is refluxed with potassium permanganate or other oxidizing reagents in water. The mixture is hot filtered to remove manganese dioxide and then allowed to cool to afford benzoic acid.

From benzyl chloride

Benzoic acid can be prepared by oxidation of benzyl chloride in the presence of alkaline KMnO4:

C6H5CH2Cl + 2 KOH + 2 [O] → C6H5COOK + KCl + H2O

Historical preparation

The first industrial process involved the reaction of benzotrichloride (trichloromethyl benzene) with calcium hydroxide in water, using iron or iron salts as catalyst. The resulting calcium benzoate is converted to benzoic acid with hydrochloric acid. The product contains significant amounts of chlorinated benzoic acid derivatives. For this reason, benzoic acid for human consumption was obtained by dry distillation of gum benzoin. Food-grade benzoic acid is now produced synthetically.

Uses

Calorimetry

Benzoic acid is the most commonly used chemical standard to determine the heat of capacity of a bomb calorimeter.[9]

Feedstock

Benzoic acid is used to make a large number of chemicals; important examples of which are:

Food preservative

Benzoic acid and its salts are used as a food preservatives, represented by the E-numbers E210, E211, E212, and E213. Benzoic acid inhibits the growth of mold, yeast[10] and some bacteria. It is either added directly or created from reactions with its sodium, potassium, or calcium salt. The mechanism starts with the absorption of benzoic acid in to the cell. If the intracellular pH changes to 5 or lower, the anaerobic fermentation of glucose through phosphofructokinase is decreased by 95%. The efficacy of benzoic acid and benzoate is thus dependent on the pH of the food.[11] Acidic food and beverage like fruit juice (citric acid), sparkling drinks (carbon dioxide), soft drinks (phosphoric acid), pickles (vinegar) or other acidified food are preserved with benzoic acid and benzoates.

Typical levels of use for benzoic acid as a preservative in food are between 0.05–0.1%. Foods in which benzoic acid may be used and maximum levels for its application are laid down in international food law.[12][13]

Concern has been expressed that benzoic acid and its salts may react with ascorbic acid (vitamin C) in some soft drinks, forming small quantities of benzene.[14]

Medicinal

Benzoic acid is a constituent of Whitfield's ointment which is used for the treatment of fungal skin diseases such as tinea, ringworm, and athlete's foot.[15][16] As the principal component of benzoin resin, benzoic acid is also a major ingredient in both tincture of benzoin and Friar's balsam. Such products have a long history of use as topical antiseptics and inhalant decongestants.

Benzoic acid was used as an expectorant, analgesic, and antiseptic in the early 20th century.[17]

Biology and health effects

Benzoic acid occurs naturally free and bound as benzoic acid esters in many plant and animal species. Appreciable amounts have been found in most berries (around 0.05%). Ripe fruits of several Vaccinium species (e.g., cranberry, V. vitis idaea; bilberry, V. macrocarpon) contain as much as 0.03-0.13% free benzoic acid. Benzoic acid is also formed in apples after infection with the fungus Nectria galligena. Among animals, benzoic acid has been identified primarily in omnivorous or phytophageous species, e.g., in viscera and muscles of the Rock Ptarmigan (Lagopus muta) as well as in gland secretions of male muskoxen (Ovibos moschatus) or Asian bull elephants (Elephas maximus).[18]

Gum benzoin contains up to 20% of benzoic acid and 40% benzoic acid esters.[19]

Cryptanaerobacter phenolicus is a bacterium species that produces benzoate from phenol via 4-hydroxybenzoate[20]

Benzoic acid is present as part of hippuric acid (N-benzoylglycine) in urine of mammals, especially herbivores (Gr. hippos = horse; ouron = urine). Humans produce about 0.44 g/L hippuric acid per day in their urine, and if the person is exposed to toluene or benzoic acid it can rise above that level.[21]

For humans, the World Health Organization's International Programme on Chemical Safety (IPCS) suggests a provisional tolerable intake would be 5 mg/kg body weight per day.[18] Cats have a significantly lower tolerance against benzoic acid and its salts than rats and mice. Lethal dose for cats can be as low as 300 mg/kg body weight.[22] The oral LD50 for rats is 3040 mg/kg, for mice it is 1940–2263 mg/kg.[18]

In Taipei, Taiwan, a city health survey in 2010 found 30% of tested dried and pickled food products failed a test having too much benzoic acid, which is known to affect the liver and kidney,[23] along with more serious issues like excessive cyclamate.

Benzoic acid activates bromelain.[24]

Chemistry

Reactions of benzoic acid can occur at either the aromatic ring or the carboxyl group:

Aromatic ring

Electrophilic aromatic substitution reaction will take place mainly in 3-position due to the electron-withdrawing carboxylic group; i.e. benzoic acid is meta directing.

The second substitution reaction (on the right) is slower because the first nitro group is deactivating.[25] Conversely, if an activating group (electron-donating) was introduced (e.g., alkyl), a second substitution reaction would occur more readily than the first and the disubstituted product might not accumulate to a significant extent.

Carboxyl group

All the reactions mentioned for carboxylic acids are also possible for benzoic acid.

References

  1. ^ a b c d e Record in the GESTIS Substance Database from the IFA
  2. ^ Melting point of benzoic acid
  3. ^ Neumüller O-A (1988). Römpps Chemie-Lexikon (6 ed.). Stuttgart: Frankh'sche Verlagshandlung. ISBN 3-440-04516-1. OCLC 50969944. 
  4. ^ Nouvelles expériences sur les amandes amères et sur l'huile volatile qu'elles fournissent Robiquet, Boutron-Charlard, Annales de chimie et de physique, 44 (1830), 352–382,
  5. ^ Liebig J, Wöhler F (1832). "Untersuchungen über das Radikal der Benzoesäure". Annalen der Chemie, 3 (3): 249–282. doi:10.1002/jlac.18320030302. 
  6. ^ Salkowski E (1875). Berl Klin Wochenschr 12: 297–298. 
  7. ^ D. D. Perrin; W. L. F. Armarego (1988). Purification of Laboratory Chemicals (3rd ed.). Pergamon Press. pp. 94. ISBN 0-08-034715-0. 
  8. ^ Donald L. Pavia (2004). Introduction to Organic Laboratory Techniques: A Small Scale Approach. Thomson Brooks/Cole. pp. 312–314. ISBN 0534408338. 
  9. ^ Experiment 2: Using Bomb Calorimetry to Determine the Resonance Energy of Benzene
  10. ^ A D Warth (1 December 1991). "Mechanism of action of benzoic acid on Zygosaccharomyces bailii: effects on glycolytic metabolite levels, energy production, and intracellular pH". Appl Environ Microbiol. 1991 December 1 (12): 3410–4. PMC 183988. PMID 1785916. http://aem.asm.org/cgi/content/abstract/57/12/3410. 
  11. ^ Pastrorova I, de Koster CG, Boom JJ (1997). "Analytic Study of Free and Ester Bound Benzoic and Cinnamic Acids of Gum Benzoin Resins by GC-MS HPLC-frit FAB-MS". Phytochem Anal 8 (2): 63–73. doi:10.1002/(SICI)1099-1565(199703)8:2<63::AID-PCA337>3.0.CO;2-Y. 
  12. ^ GSFA Online Food Additive Group Details: Benzoates (2006)
  13. ^ EUROPEAN PARLIAMENT AND COUNCIL DIRECTIVE No 95/2/EC of 20 February 1995 on food additives other than colours and sweeteners (Consleg-versions do not contain the latest changes in a law)
  14. ^ BfR article Indications of the possible formation of benzene from benzoic acid in foods, BfR Expert Opinion No. 013/2006, 1 December 2005
  15. ^ Whitfield Ointment
  16. ^ Charles Owens Wilson; Ole Gisvold; John H. Block (2004). Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical. Lippincott Williams & Wilkins. pp. 234. ISBN 0781734819. 
  17. ^ http://books.google.com/books?id=cs3mAAAAMAAJ&pg=PA25&lpg=PA25&dq=beef+extract+analgesic&source=bl&ots=dy2HVpaeRy&sig=Zvxh4LgsMYHOkl2dlHGXozPQxOY&hl=en&ei=g7-oTpmREuyDsgKd-qzODw&sa=X&oi=book_result&ct=result&resnum=6&ved=0CDIQ6AEwBQ#v=onepage&q=beef%20extract%20analgesic&f=false
  18. ^ a b c Concise International Chemical Assessment Document 26: BENZOIC ACID AND SODIUM BENZOATE
  19. ^ Tomokuni K, Ogata M (1972). "Direct Colorimetric Determination of Hippuric Acid in Urine". Clin Chem 18 (4): 349–351. PMID 5012256. 
  20. ^ Cryptanaerobacter phenolicus gen. nov., sp. nov., an anaerobe that transforms phenol into benzoate via 4-hydroxybenzoate. Pierre Juteau, Valérie Côté, Marie-France Duckett, Réjean Beaudet, François Lépine, Richard Villemur and Jean-Guy Bisaillon, IJSEM, January 2005, vol. 55, no. 1, pages 245-250, doi:10.1099/ijs.0.02914-0
  21. ^ Krebs HA, Wiggins D, Stubbs M (1983). "Studies on the mechanism of the antifungal action of benzoate". Biochem J 214 (3): 657–663. PMC 1152300. PMID 6226283. http://www.biochemj.org/bj/214/0657/2140657.pdf. 
  22. ^ Bedford PG, Clarke EG (1972). "Experimental benzoic acid poisoning in the cat". Vet Rec 90 (3): 53–58. doi:10.1136/vr.90.3.53. PMID 4672555. 
  23. ^ Nearly 30% dried, pickled foods fail safety inspections, The China Post, January 18, 2010
  24. ^ Bromelain, mpbio.com
  25. ^ Brewster, R. Q.; Williams, B.; Phillips, R. (1955), "3,5-Dinitrobenzoic Acid", Org. Synth., http://www.orgsyn.org/orgsyn/orgsyn/prepContent.asp?prep=cv3p0337 ; Coll. Vol. 3: 337 

Further reading

External links