Bailey pair
- "Bailey's method" redirects here, for the root finding algorithm, see Bailey's method (root finding).
In mathematics, a Bailey pair is a pair of sequences satisfying certain relations, and a Bailey chain is a sequence of Bailey pairs. Bailey pairs were introduced by W. N. Bailey (1947, 1948) while studying the second proof Rogers (1917) of the Rogers-Ramanujan identities, and Bailey chains were introduced by Andrews (1984).
Definition
The q-Pochhammer symbols are defined as:
A pair of sequences (αn,βn) is called a Bailey pair if they are related by
or equivalently
Bailey's lemma
Bailey's lemma states that if (αn,βn) is a Bailey pair, then so is (α'n,β'n) where
In other words, given one Bailey pair, one can construct a second using the formulas above. This process can be iterated to produce an infinite sequence of Bailey pairs, called a Bailey chain.
Examples
An example of a Bailey pair is given by (Andrews, Askey & Roy 1999, p. 590)
L. J. Slater (1952) gave a list of 130 examples related to Bailey pairs.
References
- Andrews, George E. (1984), "Multiple series Rogers-Ramanujan type identities", Pacific Journal of Mathematics 114 (2): 267–283, ISSN 0030-8730, MR757501, http://projecteuclid.org/euclid.pjm/1102708707
- Andrews, George E.; Askey, Richard; Roy, Ranjan (1999), Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, ISBN 978-0-521-62321-6; 978-0-521-78988-2, MR1688958
- Bailey, W. N. (1947), "Some identities in combinatory analysis", Proceedings of the London Mathematical Society. Second Series 49 (6): 421–425, doi:10.1112/plms/s2-49.6.421, ISSN 0024-6115, MR0022816
- Bailey, W. N. (1948), "Identities of the Rogers-Ramanujan Type", Proc. London Math. Soc. s2-50 (1): 1–10, doi:10.1112/plms/s2-50.1.1
- Paule, Peter, The Concept of Bailey Chains, http://www.emis.de/journals/SLC/opapers/s18paule.pdf
- Slater, L. J. (1952), "Further identities of the Rogers-Ramanujan type", Proceedings of the London Mathematical Society. Second Series 54 (2): 147–167, doi:10.1112/plms/s2-54.2.147, ISSN 0024-6115, MR0049225
- Warnaar, S. Ole (2001), "50 years of Bailey's lemma", Algebraic combinatorics and applications (Gössweinstein, 1999), Berlin, New York: Springer-Verlag, pp. 333–347, MR1851961, http://www.maths.uq.edu.au/~uqowarna/pubs/Bailey50.pdf