BRCA2
BRCA2 (Breast Cancer 2 susceptibility protein) is a protein that in humans is encoded by the BRCA2 gene.[1] BRCA2 orthologs have been identified in most mammals for which complete genome data are available.[2] BRCA2 belongs to the tumor suppressor gene family[3][4] and the protein encoded by this gene is involved in the repair of chromosomal damage with an important role in the error-free repair of DNA double strand breaks.[5]
The BRCA2 gene is located on the long (q) arm of chromosome 13 at position 12.3 (13q12.3) and is 84,188 base pairs long.[1]
Function
Although the structures of the BRCA1 and BRCA2 genes are very different, at least some functions are interrelated. The proteins made by both genes are essential for repairing damaged DNA. The BRCA2 protein binds to and regulates the protein produced by the RAD51 gene to fix breaks in DNA. These breaks can be caused by natural and medical radiation or other environmental exposures, but also occur when chromosomes exchange genetic material during a special type of cell division that creates sperm and eggs (meiosis). By repairing DNA, these three proteins play a role in maintaining the stability of the human genome and prevent dangerous gene rearrangements that can lead to hematologic cancers.[5]
Like BRCA1, BRCA2 probably regulates the activity of other genes and plays a critical role in embryo development.
Clinical significance
Certain variations of the BRCA2 gene cause an increased risk for breast cancer as part of a hereditary breast-ovarian cancer syndrome. Researchers have identified hundreds of mutations in the BRCA2 gene, many of which cause an increased risk of cancer. BRCA2 mutations are usually insertions or deletions of a small number of DNA base pairs (the building material of chromosomes) in the gene. As a result of these mutations, the protein product of the BRCA2 gene is abnormal and does not function properly. Researchers believe that the defective BRCA2 protein is unable to help fix mutations that occur in other genes. As a result, mutations build up and can cause cells to divide in an uncontrolled way and form a tumor.
People who have two mutated copies of the BRCA2 gene have one type of Fanconi anemia. This condition is caused by extremely reduced levels of the BRCA2 protein in cells, which allows the accumulation of damaged DNA. Patients with Fanconi anemia are prone to several types of leukemia (a type of blood cell cancer); solid tumors, particularly of the head, neck, skin, and reproductive organs; and bone marrow suppression (reduced blood cell production that leads to anemia). A pathogenic mutation almost anywhere in a model pathway for DNA double strand break repair containing BRCA1 and BRCA2 greatly increases the risks for a subgroup of lymphomas and leukemia.[5]
In addition to breast cancer in men and women, mutations in BRCA2 also lead to an increased risk of ovarian, Fallopian tube, prostate, and pancreatic cancers, as well as malignant melanoma. In some studies, mutations in the central part of the gene have been associated with a higher risk of ovarian cancer and a lower risk of prostate cancer than mutations in other parts of the gene. Several other types of cancer have also been seen in certain families with BRCA2 mutations.
History
The BRCA2 gene was discovered in 1994 by Professor Michael Stratton and Dr Richard Wooster (Institute of Cancer Research, UK).[1] The Wellcome Trust Sanger Institute (Hinxton, Cambs, UK) collaborated with Stratton and Wooster to isolate the gene. In honour of this discovery and collaboration, the Wellcome Trust has participated in the construction of a cycle path between Addenbrooke's Hospital site in Cambridge and the nearby village of Great Shelford. It is decorated with over 10,000 lines of 4 colours representing the nucleotide sequence of BRCA2. It makes up part of National Cycle Route 11, and can be seen from trains running between Cambridge and London.
Germ line BRCA2 mutations and founder effect
All germ line BRCA2 mutations identified to date have been inherited, suggesting the possibility of a large “founder” effect in which a certain mutation is common to a well-defined population group and can theoretically be traced back to a common ancestor. Given the complexity of mutation screening for BRCA2, these common mutations may simplify the methods required for mutation screening in certain populations. Analysis of mutations that occur with high frequency also permits the study of their clinical expression.[6] A striking example of a founder mutation is found in Iceland, where a single BRCA2 (999del5) mutation accounts for virtually all breast/ovarian cancer families.[7][8] This frame-shift mutation leads to a highly truncated protein product. In a large study examining hundreds of cancer and control individuals, this 999del5 mutation was found in 0.6% of the general population. Of note, while 72% of patients who were found to be carriers had a moderate or strong family history of breast cancer, 28% had little or no family history of the disease. This strongly suggests the presence of modifying genes that affect the phenotypic expression of this mutation, or possibly the interaction of the BRCA2 mutation with environmental factors. Additional examples of founder mutations in BRCA2 are given in the table below.
-
Population or subgroup |
BRCA2 mutation(s)[6][9] |
Reference(s) |
Ashkenazi Jewish |
6174delT |
[10] |
Dutch |
5579insA |
[11] |
Finns |
8555T>G, 999del5, IVS23-2A>G |
[12][13] |
French Canadians |
8765delAG |
[14] |
Germans |
|
|
Hungarians |
9326insA |
[15] |
Icelandics |
999del5 |
[7][8] |
Italians |
8765delAG |
[16] |
Northern Irish |
6503delTT |
[17] |
Pakistanis |
3337C>T |
[18] |
Scottish |
6503delTT |
[17] |
Slovenians |
IVS16-2A>G |
[19] |
Spanish |
3034delAAAC(codon936), 9254del5 |
[20] |
Swedish |
4486delG |
[21] |
Interactions
BRCA2 has been shown to interact with
- BRE,[22]
- BARD1,[22][23]
- BCCIP,[24]
- BRCA1,[22][25][26][27]
- BRCC3,[22]
- BUB1B,[28]
- CREB-binding protein,[29]
- C11orf30,[30]
- FANCD2,[31][32][33]
- FANCG,[34]
- FLNA,[35]
- HMG20B,[36][37]
- P53,[22][38]
- PCAF,[39][40]
- PLK1,[39][41]
- RAD51,[22][25][39][42][43][44][45][46][47][48][24][26][38]
- RPA1,[49]
- SHFM1[50][51] and
- SMAD3.[52]
Domain architecture
BRCA2 contains a number of 39 amino acid repeats that are critical for binding to RAD51 (a key protein in DNA recombinational repair) and resistance to methyl methanesulphonate treatment.[38][44][45][53]
The BRCA2 helical domain adopts a helical structure, consisting of a four-helix cluster core (alpha 1, alpha 8, alpha 9, alpha 10) and two successive beta-hairpins (beta 1 to beta 4). An approximately 50-amino acid segment that contains four short helices (alpha 2 to alpha 4), meanders around the surface of the core structure. In BRCA2, the alpha 9 and alpha 10 helices pack with the BRCA2 OB1 domain through van der Waals contacts involving hydrophobic and aromatic residues, and also through side-chain and backbone hydrogen bonds. This domain binds the 70-amino acid DSS1 (deleted in split-hand/split foot syndrome) protein, which was originally identified as one of three genes that map to a 1.5-Mb locus deleted in an inherited developmental malformation syndrome.[51]
The BRCA OB1 domain assumes an OB fold, which consists of a highly curved five-stranded beta-sheet that closes on itself to form a beta-barrel. OB1 has a shallow groove formed by one face of the curved sheet and is demarcated by two loops, one between beta 1 and beta 2 and another between beta 4 and beta 5, which allows for weak single strand DNA binding. The domain also binds the 70-amino acid DSS1 (deleted in split-hand/split foot syndrome) protein.[51]
The BRCA OB3 domain assumes an OB fold, which consists of a highly curved five-stranded beta-sheet that closes on itself to form a beta-barrel. OB3 has a pronounced groove formed by one face of the curved sheet and is demarcated by two loops, one between beta 1 and beta 2 and another between beta 4 and beta 5, which allows for strong ssDNA binding.[51]
The Tower domain adopts a secondary structure consisting of a pair of long, antiparallel alpha-helices (the stem) that support a three-helix bundle (3HB) at their end. The 3HB contains a helix-turn-helix motif and is similar to the DNA binding domains of the bacterial site-specific recombinases, and of eukaryotic Myb and homeodomain transcription factors. The Tower domain has an important role in the tumour suppressor function of BRCA2, and is essential for appropriate binding of BRCA2 to DNA.[51]
See also
References
- ^ a b c Wooster R, Neuhausen SL, Mangion J, Quirk Y, Ford D, Collins N, Nguyen K, Seal S, Tran T, Averill D, et al. (September 1994). "Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13". Science 265 (5181): 2088–90. doi:10.1126/science.8091231. PMID 8091231.
- ^ "OrthoMaM phylogenetic marker: BRCA2 coding sequence". http://www.orthomam.univ-montp2.fr/orthomam/data/cds/detailMarkers/ENSG00000139618_BRCA2.xml.
- ^ Duncan JA, Reeves JR, Cooke TG (October 1998). "BRCA1 and BRCA2 proteins: roles in health and disease". Molecular pathology : MP 51 (5): 237–47. doi:10.1136/mp.51.5.237. PMC 395646. PMID 10193517. http://mp.bmj.com/cgi/content/abstract/51/5/237.
- ^ Yoshida K, Miki Y (November 2004). "Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage". Cancer science 95 (11): 866–71. doi:10.1111/j.1349-7006.2004.tb02195.x. PMID 15546503. http://www.jca.gr.jp/cs/95/11/866.pdf.
- ^ a b c 4. Friedenson B. (2008) [1] Breast cancer genes protect against some leukemias and lymphomas
- ^ a b Lacroix, M; Leclercq, G. (2005). "The "portrait" of hereditary breast cancer". Breast Cancer Research and Treatment 89 (3): 297–304. doi:10.1007/s10549-004-2172-4. PMID 15754129.
- ^ a b Thorlacius, S; Olafsdottir, G; Tryggvadottir, L; Neuhausen, S; Jonasson, JG; Tavtigian, SV; Tulinius, H; Ogmundsdottir, HM; Eyfjord, JE. (1996). "A single BRCA2 mutation in male and female breast cancer families from Iceland with varied cancer phenotypes". Nature Genetics 13 (1): 117–119. doi:10.1038/ng0596-117. PMID 8673089.
- ^ a b Thorlacius, S; Sigurdsson, S; Bjarnadottir, H; Olafsdottir, G; Jonasson, JG; Tryggvadottir, L; Tulinius, H; Eyfjord, JE. (1997). "Study of a single BRCA2 mutation with high carrier frequency in a small population". American Journal of Human Genetics 60 (5): 1079–1085. PMC 1712443. PMID 9150155. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1712443.
- ^ den Dunnen, JT; Antonarakis, SE. (2000). "Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion.". Human Mutation 15 (1): 7–12. doi:10.1002/(SICI)1098-1004(200001)15:1<7::AID-HUMU4>3.0.CO;2-N. PMID 10612815.
- ^ Neuhausen, S; Gilewski, T; Norton, L; Tran, T; McGuire, P; Swensen, J; Hampel, H; Borgen, P; Brown, K; Skolnick, M; Shattuck-Eidens, D; Jhanwar, S; Goldgar, D; Offit, K. (1996). "Recurrent BRCA2 6174delT mutations in Ashkenazi Jewish women affected by breast cancer". Nature Genetics 13 (1): 126–128. doi:10.1038/ng0596-126. PMID 8673092.
- ^ Verhoog, LC; van den Ouweland, AM; Berns, E; van Veghel-Plandsoen, MM; van Staveren, IL; Wagner, A; Bartels, CC; Tilanus-Linthorst, MM; Devilee, P; Seynaeve, C; Halley, DJ; Niermeijer, MF; Klijn, JG; Meijers-Heijboer, H. (2001). "Large regional differences in the frequency of distinct BRCA1/BRCA2 mutations in 517 Dutch breast and/or ovarian cancer families". European Journal of Cancer 37 (16): 2082–2090. doi:10.1016/S0959-8049(01)00244-1. PMID 11597388.
- ^ Huusko, P; Pääkkönen, K; Launonen, V; Poyhonen, M; Blanco, G; Kauppila, A; Puistola, U; Kiviniemi, H; Kujala, M; Leisti, J; Winqvist, R. (1998). "Evidence of founder mutations in Finnish BRCA1 and BRCA2 families". American Journal of Human Genetics 62 (6): 1544–1548. doi:10.1086/301880. PMC 1377159. PMID 9585608. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1377159.
- ^ Pääkkönen, K; Sauramo, S; Sarantaus, L; Vahteristo, P; Hartikainen, A; Vehmanen, P; Ignatius, J; Ollikainen, V; Kaariainen, H; Vauramo, E; Nevanlinna, H; Krahe, R; Holli, K; Kere, J. (2001). "Involvement of BRCA1 and BRCA2 in breast cancer in a western Finnish sub-population". Genetic Epidemiology 20 (2): 239–246. doi:10.1002/1098-2272(200102)20:2<239::AID-GEPI6>3.0.CO;2-Y. PMID 11180449.
- ^ Tonin, PN; Mes-Masson, AM; Narod, SA; Ghadirian, P; Provencher, D. (1999). "Founder BRCA1 and BRCA2 mutations in French Canadian ovarian cancer cases unselected for family history". Clinical Genetics 55 (5): 318–324. doi:10.1034/j.1399-0004.1999.550504.x. PMID 10422801.
- ^ Van Der Looij, M; Szabo, C; Besznyak, I; Liszka, G; Csokay, B; Pulay, T; Toth, J; Devilee, P; King, MC; Olah, E. (2000). "Prevalence of founder BRCA1 and BRCA2 mutations among breast and ovarian cancer patients in Hungary". International Journal of Cancer 86 (5): 737–740. doi:10.1002/(SICI)1097-0215(20000601)86:5<737::AID-IJC21>3.0.CO;2-1. PMID 10797299.
- ^ Pisano, M; Cossu, A; Persico, I; Palmieri, G; Angius, A; Casu, G; Palomba, G; Sarobba, MG; Rocca, PC; Dedola, MF; Olmeo, N; Pasca, A; Budroni, M; Marras, V; Pisano, A; Farris, A; Massarelli, G; Pirastu, M; Tanda, F. (2000). "Identification of a founder BRCA2 mutation in Sardinia". British Journal of Cancer 82 (3): 553–559. doi:10.1054/bjoc.1999.0963. PMC 2363305. PMID 10682665. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2363305.
- ^ a b The Scottish/Northern Irish BRCA1/BRCA2 Consortium (2003). "BRCA1 and BRCA2 mutations in Scotland and Northern Ireland". British Journal of Cancer 88 (8): 1256–1262. doi:10.1038/sj.bjc.6600840. PMC 2747571. PMID 12698193. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2747571.
- ^ Liede, A; Malik, IA; Aziz, Z; Rios, PD; Kwan, E; Narod, SA. (2002). "Contribution of BRCA1 and BRCA2 mutations to breast and ovarian cancer in Pakistan". American Journal of Human Genetics 71 (3): 595–606. doi:10.1086/342506. PMC 379195. PMID 12181777. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=379195.
- ^ Krajc, M; De Greve, J; Goelen, G; Teugels, E. (2002). "BRCA2 founder mutation in Slovenian breast cancer families". European Journal of Human Genetics 10 (12): 879–882. doi:10.1038/sj.ejhg.5200886. PMID 12461697.
- ^ Osorio, A; Robledo, M; Martinez, B; Cebrian, A; San Roman, JM; Albertos, J; Lobo, F; Benitez, J. (1998). "Molecular analysis of the BRCA2 gene in 16 breast/ovarian cancer Spanish families". Clinical Genetics 54 (7): 142–147. doi:10.1054/bjoc.1999.1089. PMC 2374482. PMID 10755399. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2374482.
- ^ Neuhausen, SL (2000). "Founder populations and their uses for breast cancer genetics". Cancer Research 2 (2): 77–81. PMC 139426. PMID 11250694. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=139426.
- ^ a b c d e f Dong, Yuanshu; Hakimi Mohamed-Ali, Chen Xiaowei, Kumaraswamy Easwari, Cooch Neil S, Godwin Andrew K, Shiekhattar Ramin (Nov. 2003). "Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair". Mol. Cell (United States) 12 (5): 1087–99. doi:10.1016/S1097-2765(03)00424-6. ISSN 1097-2765. PMID 14636569.
- ^ Ryser, Stephan; Dizin Eva, Jefford Charles Edward, Delaval Bénédicte, Gagos Sarantis, Christodoulidou Agni, Krause Karl-Heinz, Birnbaum Daniel, Irminger-Finger Irmgard (Feb. 2009). "Distinct roles of BARD1 isoforms in mitosis: full-length BARD1 mediates Aurora B degradation, cancer-associated BARD1beta scaffolds Aurora B and BRCA2". Cancer Res. (United States) 69 (3): 1125–34. doi:10.1158/0008-5472.CAN-08-2134. PMID 19176389.
- ^ a b Liu, J; Yuan Y, Huan J, Shen Z (Jan. 2001). "Inhibition of breast and brain cancer cell growth by BCCIPalpha, an evolutionarily conserved nuclear protein that interacts with BRCA2". Oncogene (England) 20 (3): 336–45. doi:10.1038/sj.onc.1204098. ISSN 0950-9232. PMID 11313963.
- ^ a b Sarkisian, C J; Master S R, Huber L J, Ha S I, Chodosh L A (Oct. 2001). "Analysis of murine Brca2 reveals conservation of protein-protein interactions but differences in nuclear localization signals". J. Biol. Chem. (United States) 276 (40): 37640–8. doi:10.1074/jbc.M106281200. ISSN 0021-9258. PMID 11477095.
- ^ a b Chen, J; Silver D P, Walpita D, Cantor S B, Gazdar A F, Tomlinson G, Couch F J, Weber B L, Ashley T, Livingston D M, Scully R (Sep. 1998). "Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells". Mol. Cell (UNITED STATES) 2 (3): 317–28. doi:10.1016/S1097-2765(00)80276-2. ISSN 1097-2765. PMID 9774970.
- ^ Reuter, Tanja Y; Medhurst Annette L, Waisfisz Quinten, Zhi Yu, Herterich Sabine, Hoehn Holger, Gross Hans J, Joenje Hans, Hoatlin Maureen E, Mathew Christopher G, Huber Pia A J (Oct. 2003). "Yeast two-hybrid screens imply involvement of Fanconi anemia proteins in transcription regulation, cell signaling, oxidative metabolism, and cellular transport". Exp. Cell Res. (United States) 289 (2): 211–21. doi:10.1016/S0014-4827(03)00261-1. ISSN 0014-4827. PMID 14499622.
- ^ Futamura, M; Arakawa H, Matsuda K, Katagiri T, Saji S, Miki Y, Nakamura Y (Mar. 2000). "Potential role of BRCA2 in a mitotic checkpoint after phosphorylation by hBUBR1". Cancer Res. (UNITED STATES) 60 (6): 1531–5. ISSN 0008-5472. PMID 10749118.
- ^ Siddique H, Rao VN, Reddy ES (Aug 2009). "CBP-mediated post-translational N-glycosylation of BRCA2". Int J Oncol. 35 (2): 16387–91. PMID 19578754.
- ^ Hughes-Davies, Luke; Huntsman David, Ruas Margarida, Fuks Francois, Bye Jacqueline, Chin Suet-Feung, Milner Jonathon, Brown Lindsay A, Hsu Forrest, Gilks Blake, Nielsen Torsten, Schulzer Michael, Chia Stephen, Ragaz Joseph, Cahn Anthony, Linger Lori, Ozdag Hilal, Cattaneo Elena, Jordanova E S, Schuuring Edward, Yu David S, Venkitaraman Ashok, Ponder Bruce, Doherty Aidan, Aparicio Samuel, Bentley David, Theillet Charles, Ponting Chris P, Caldas Carlos, Kouzarides Tony (Nov. 2003). "EMSY links the BRCA2 pathway to sporadic breast and ovarian cancer". Cell (United States) 115 (5): 523–35. doi:10.1016/S0092-8674(03)00930-9. ISSN 0092-8674. PMID 14651845.
- ^ Wang, XiaoZhe; Andreassen Paul R, D'Andrea Alan D (Jul. 2004). "Functional interaction of monoubiquitinated FANCD2 and BRCA2/FANCD1 in chromatin". Mol. Cell. Biol. (United States) 24 (13): 5850–62. doi:10.1128/MCB.24.13.5850-5862.2004. ISSN 0270-7306. PMC 480901. PMID 15199141. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=480901.
- ^ Hussain, Shobbir; Wilson James B, Medhurst Annette L, Hejna James, Witt Emily, Ananth Sahana, Davies Adelina, Masson Jean-Yves, Moses Robb, West Stephen C, de Winter Johan P, Ashworth Alan, Jones Nigel J, Mathew Christopher G (Jun. 2004). "Direct interaction of FANCD2 with BRCA2 in DNA damage response pathways". Hum. Mol. Genet. (England) 13 (12): 1241–8. doi:10.1093/hmg/ddh135. ISSN 0964-6906. PMID 15115758.
- ^ Hejna, James; Holtorf Megan, Hines Jennie, Mathewson Lauren, Hemphill Aaron, Al-Dhalimy Muhsen, Olson Susan B, Moses Robb E (Apr. 2008). "Tip60 is required for DNA interstrand cross-link repair in the Fanconi anemia pathway". J. Biol. Chem. (United States) 283 (15): 9844–51. doi:10.1074/jbc.M709076200. ISSN 0021-9258. PMC 2398728. PMID 18263878. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2398728.
- ^ Hussain, Shobbir; Witt Emily, Huber Pia A J, Medhurst Annette L, Ashworth Alan, Mathew Christopher G (Oct. 2003). "Direct interaction of the Fanconi anaemia protein FANCG with BRCA2/FANCD1". Hum. Mol. Genet. (England) 12 (19): 2503–10. doi:10.1093/hmg/ddg266. ISSN 0964-6906. PMID 12915460.
- ^ Yuan, Y; Shen Z (Dec. 2001). "Interaction with BRCA2 suggests a role for filamin-1 (hsFLNa) in DNA damage response". J. Biol. Chem. (United States) 276 (51): 48318–24. doi:10.1074/jbc.M102557200. ISSN 0021-9258. PMID 11602572.
- ^ Marmorstein, L Y; Kinev A V, Chan G K, Bochar D A, Beniya H, Epstein J A, Yen T J, Shiekhattar R (Jan. 2001). "A human BRCA2 complex containing a structural DNA binding component influences cell cycle progression". Cell (United States) 104 (2): 247–57. doi:10.1016/S0092-8674(01)00209-4. ISSN 0092-8674. PMID 11207365.
- ^ Hakimi, Mohamed-Ali; Bochar Daniel A, Chenoweth Josh, Lane William S, Mandel Gail, Shiekhattar Ramin (May. 2002). "A core-BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes". Proc. Natl. Acad. Sci. U.S.A. (United States) 99 (11): 7420–5. doi:10.1073/pnas.112008599. ISSN 0027-8424. PMC 124246. PMID 12032298. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=124246.
- ^ a b c Marmorstein, L Y; Ouchi T, Aaronson S A (Nov. 1998). "The BRCA2 gene product functionally interacts with p53 and RAD51". Proc. Natl. Acad. Sci. U.S.A. (UNITED STATES) 95 (23): 13869–74. doi:10.1073/pnas.95.23.13869. ISSN 0027-8424. PMC 24938. PMID 9811893. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=24938.
- ^ a b c Lin, Horng-Ru; Ting Nicholas S Y, Qin Jun, Lee Wen-Hwa (Sep. 2003). "M phase-specific phosphorylation of BRCA2 by Polo-like kinase 1 correlates with the dissociation of the BRCA2-P/CAF complex". J. Biol. Chem. (United States) 278 (38): 35979–87. doi:10.1074/jbc.M210659200. ISSN 0021-9258. PMID 12815053.
- ^ Fuks, F; Milner J, Kouzarides T (Nov. 1998). "BRCA2 associates with acetyltransferase activity when bound to P/CAF". Oncogene (ENGLAND) 17 (19): 2531–4. doi:10.1038/sj.onc.1202475. ISSN 0950-9232. PMID 9824164.
- ^ Lee, MiYoung; Daniels Matthew J, Venkitaraman Ashok R (Jan. 2004). "Phosphorylation of BRCA2 by the Polo-like kinase Plk1 is regulated by DNA damage and mitotic progression". Oncogene (England) 23 (4): 865–72. doi:10.1038/sj.onc.1207223. ISSN 0950-9232. PMID 14647413.
- ^ Sharan, S K; Morimatsu M, Albrecht U, Lim D S, Regel E, Dinh C, Sands A, Eichele G, Hasty P, Bradley A (Apr. 1997). "Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2". Nature (ENGLAND) 386 (6627): 804–10. doi:10.1038/386804a0. ISSN 0028-0836. PMID 9126738.
- ^ Yu, David S; Sonoda Eiichiro, Takeda Shunichi, Huang Christopher L H, Pellegrini Luca, Blundell Tom L, Venkitaraman Ashok R (Oct. 2003). "Dynamic control of Rad51 recombinase by self-association and interaction with BRCA2". Mol. Cell (United States) 12 (4): 1029–41. doi:10.1016/S1097-2765(03)00394-0. ISSN 1097-2765. PMID 14580352.
- ^ a b Chen, P L; Chen C F, Chen Y, Xiao J, Sharp Z D, Lee W H (Apr. 1998). "The BRC repeats in BRCA2 are critical for RAD51 binding and resistance to methyl methanesulfonate treatment". Proc. Natl. Acad. Sci. U.S.A. (UNITED STATES) 95 (9): 5287–92. doi:10.1073/pnas.95.9.5287. ISSN 0027-8424. PMC 20253. PMID 9560268. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=20253.
- ^ a b Wong, A K; Pero R, Ormonde P A, Tavtigian S V, Bartel P L (Dec. 1997). "RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene brca2". J. Biol. Chem. (UNITED STATES) 272 (51): 31941–4. doi:10.1074/jbc.272.51.31941. ISSN 0021-9258. PMID 9405383.
- ^ Katagiri, T; Saito H, Shinohara A, Ogawa H, Kamada N, Nakamura Y, Miki Y (Mar. 1998). "Multiple possible sites of BRCA2 interacting with DNA repair protein RAD51". Genes Chromosomes Cancer (UNITED STATES) 21 (3): 217–22. doi:10.1002/(SICI)1098-2264(199803)21:3<217::AID-GCC5>3.0.CO;2-2. ISSN 1045-2257. PMID 9523196.
- ^ Pellegrini, Luca; Yu David S, Lo Thomas, Anand Shubha, Lee MiYoung, Blundell Tom L, Venkitaraman Ashok R (Nov. 2002). "Insights into DNA recombination from the structure of a RAD51-BRCA2 complex". Nature (England) 420 (6913): 287–93. doi:10.1038/nature01230. ISSN 0028-0836. PMID 12442171.
- ^ Tarsounas, Madalena; Davies Adelina A, West Stephen C (Jan. 2004). "RAD51 localization and activation following DNA damage". Philos. Trans. R. Soc. Lond., B, Biol. Sci. (England) 359 (1441): 87–93. doi:10.1098/rstb.2003.1368. ISSN 0962-8436. PMC 1693300. PMID 15065660. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1693300.
- ^ Wong, Johnson M S; Ionescu Daniela, Ingles C James (Jan. 2003). "Interaction between BRCA2 and replication protein A is compromised by a cancer-predisposing mutation in BRCA2". Oncogene (England) 22 (1): 28–33. doi:10.1038/sj.onc.1206071. ISSN 0950-9232. PMID 12527904.
- ^ Marston, N J; Richards W J, Hughes D, Bertwistle D, Marshall C J, Ashworth A (Jul. 1999). "Interaction between the product of the breast cancer susceptibility gene BRCA2 and DSS1, a protein functionally conserved from yeast to mammals". Mol. Cell. Biol. (UNITED STATES) 19 (7): 4633–42. ISSN 0270-7306. PMC 84261. PMID 10373512. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=84261.
- ^ a b c d e Yang, Haijuan; Jeffrey Philip D, Miller Julie, Kinnucan Elspeth, Sun Yutong, Thoma Nicolas H, Zheng Ning, Chen Phang-Lang, Lee Wen-Hwa, Pavletich Nikola P (Sep. 2002). "BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure". Science (United States) 297 (5588): 1837–48. doi:10.1126/science.297.5588.1837. PMID 12228710.
- ^ Preobrazhenska, Olena; Yakymovych Mariya, Kanamoto Takashi, Yakymovych Ihor, Stoika Rostyslav, Heldin Carl-Henrik, Souchelnytskyi Serhiy (Aug. 2002). "BRCA2 and Smad3 synergize in regulation of gene transcription". Oncogene (England) 21 (36): 5660–4. doi:10.1038/sj.onc.1205732. ISSN 0950-9232. PMID 12165866.
- ^ Bork P, Blomberg N, Nilges M (May 1996). "Internal repeats in the BRCA2 protein sequence". Nat. Genet. 13 (1): 22â3. doi:10.1038/ng0596-22. PMID 8673099.
Further reading
- Zou JP, Hirose Y, Siddique H, Rao VN, Reddy ES (1999). "Structure and expression of variant BRCA2a lacking the transactivation domain". Oncology reports 6 (2): 437–40. PMID 10023017.
- Venkitaraman AR (2001). "Chromosome stability, DNA recombination and the BRCA2 tumour suppressor". Curr. Opin. Cell Biol. 13 (3): 338–43. doi:10.1016/S0955-0674(00)00217-9. PMID 11343905.
- Orelli BJ, Bishop DK (2001). "BRCA2 and homologous recombination". Breast Cancer Res. 3 (5): 294–8. doi:10.1186/bcr310. PMC 138691. PMID 11597317. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=138691.
- Daniel DC (2002). "Highlight: BRCA1 and BRCA2 proteins in breast cancer". Microsc. Res. Tech. 59 (1): 68–83. doi:10.1002/jemt.10178. PMID 12242698.
- Tutt A, Ashworth A (2003). "The relationship between the roles of BRCA genes in DNA repair and cancer predisposition". Trends in molecular medicine 8 (12): 571–6. doi:10.1016/S1471-4914(02)02434-6. PMID 12470990.
- Gonçalves A, Viens P, Sobol H, et al. (2005). "[Molecular alterations in breast cancer: clinical implications and new analytical tools]". La Revue de médecine interne / fondée ... Par la Société nationale francaise de médecine interne 26 (6): 470–8. doi:10.1016/j.revmed.2004.11.012. PMID 15936476.
- Hay T, Clarke AR (2005). "DNA damage hypersensitivity in cells lacking BRCA2: a review of in vitro and in vivo data". Biochem. Soc. Trans. 33 (Pt 4): 715–7. doi:10.1042/BST0330715. PMID 16042582.
- Domchek SM, Weber BL (2006). "Clinical management of BRCA1 and BRCA2 mutation carriers". Oncogene 25 (43): 5825–31. doi:10.1038/sj.onc.1209881. PMID 16998496.
- Honrado E, Osorio A, Palacios J, Benitez J (2006). "Pathology and gene expression of hereditary breast tumors associated with BRCA1, BRCA2 and CHEK2 gene mutations". Oncogene 25 (43): 5837–45. doi:10.1038/sj.onc.1209875. PMID 16998498.
External links
PDB gallery
|
|
|
1n0w: Crystal structure of a RAD51-BRCA2 BRC repeat complex
|
|
|
|
This article incorporates text from the public domain Pfam and InterPro IPR002093
This article incorporates text from the public domain Pfam and InterPro IPR015252
This article incorporates text from the public domain Pfam and InterPro IPR015187
This article incorporates text from the public domain Pfam and InterPro IPR015205