Bio-energy with carbon capture and storage (BECCS) is a greenhouse gas mitigation technology which produces negative carbon emissions by combining biomass use with geologic carbon capture and storage.[1] BECCS extracts CO2 from the atmosphere and store it into trees and crops as they grow. CO2 is then released when they are combusted or decompose. Therefore, biogenic CO2 does not contribute to the increase of greenhouse gases in the atmosphere.[2] It was pointed out in the IPCC Fourth Assessment Report by the Intergovernmental Panel on Climate Change (IPCC) as a key technology for reaching low carbon dioxide atmospheric concentration targets.[3] The negative emissions that can be produced by BECCS has been estimated by the Royal Society to be equivalent to a 50 to 150 ppm decrease in global atmospheric carbon dioxide concentrations[4] and according to the International Energy Agency, the BLUE map climate change mitigation scenario calls for more than 2 gigatonnes of negative CO2 emissions per year with BECCS in 2050.[5]
The concept of BECCS is drawn from the integration of biomass processing industries or biomass fuelled power plants with carbon capture and storage. BECCS is a form of carbon dioxide removal, along with technologies such as biochar, carbon dioxide air capture and biomass burial.[6]
Contents |
The main appeal of BECCS is in its ability to result in negative emissions of CO2. The capture of carbon dioxide from bioenergy sources effectively removes CO2 from the atmosphere.[7]
Bio-energy is derived from biomass which is a renewable energy source and serves as a carbon sink during its growth. During industrial processes, the biomass combusted or processed re-releases the CO2 into the atmosphere. The process thus results in a net zero emission of CO2, though this may be positively or negatively altered depending on the carbon emissions associated with biomass growth, transport and processing , see below under environmental considerations.[8] Carbon capture and storage (CCS) technology serves to intercept the release of CO2 into the atmosphere and redirect it into geological storage locations.[9] CO2 with a biomass origin is not only released from biomass fuelled power plants, but also during the production of pulp used to make paper and in the production of biofuels such as biogas and bioethanol. The BECCS technology can also be employed on such industrial processes.[10]
It is argued that through the BECCS technology, carbon dioxide is trapped in geologic formations for very long periods of time, whereas for example a tree only stores its carbon during its lifetime. In its report on the CCS technology, IPCC projects that more than 99% of carbon dioxide which is stored through geologic sequestration is likely to stay in place for more than 1000 years. While other types of carbon sinks such as the ocean, trees and soil may involve the risk of negative feedback loops at increased temperatures, BECCS technology is likely to provide a better permanence by storing CO2 in geological formations.[2][11]
The amount of CO2 that has been released to date is believed to be too much to be able to be absorbed by conventional sinks such as trees and soil in order to reach low emission targets.[12] In addition to the presently accumulated emissions, there will be significant additional emissions during this century, even in the most ambitious low-emission scenarios. BECCS has therefore been suggested as a technology to reverse the emission trend and create a global system of net negative emissions.[1][3][12][13][14] This implies that the emissions would not only be zero, but negative, so that not only the emissions, but the absolute amount of CO2 in the atmosphere would be reduced.
Source | CO2 Source | Sector |
---|---|---|
Electrical power plants | Combustion of biomass or biofuel in steam or gas powered generators releases CO2 as a by-product | Energy |
Heat power plants | Combustion of biofuel for heat generation releases CO2 as a by-product. Usually used for district heating | Energy |
Pulp and paper mills |
|
Industry |
Ethanol production | Fermentation of biomass such as sugarcane, wheat or corn releases CO2 as a by-product | Industry |
Biogas production | In the biogas upgrading process, CO2 is separated from the methane to produce a higher quality gas | Industry |
The main technology for CO2 capture from biotic sources generally employs the same technology as carbon dioxide capture from conventional fossil fuel sources. Broadly, three different types of technologies exist: post-combustion, pre-combustion, and oxy-fuel combustion.[16]
Based on the current Kyoto Protocol agreement, carbon capture and storage projects are not applicable as an emission reduction tool to be used for the Clean Development Mechanism (CDM) or for Joint Implementation (JI) projects.[17] Recognising CCS technologies as an emission reduction tool is vital for the implementation of such plants as there is no other financial motivation for the implementation of such systems. There has been growing support to have fossil CCS and BECCS included in the protocol. Accounting studies on how this can be implemented, including BECCS, have also been done.[18]
Some of the environmental considerations and other concerns about the widespread implementation of BECCS are similar to those of CCS. However, much of the critique towards CCS is that it may strengthen the dependency on depletable fossil fuels and environmentally invasive coal mining. This is not the case with BECCS, as it relies on renewable biomass. There are however other considerations which involve BECCS and these concerns are related to the possible increased use of biofuels.
Biomass production is subject to a range of sustainability constraints, such as: scarcity of arable land and fresh water, loss of biodiversity, competition with food production, deforestation and scarcity of phosphorus.[19] It is important to make sure that biomass is used in a way that maximizes both energy and climate benefits. There has been criticism to some suggested BECCS deployment scenarios, where there would be a very heavy reliance on increased biomass input.[20]
These systems may have other negative side effects. There is however presently no need to expand the use of biofuels in energy or industry applications to allow for BECCS deployment. There is already today considerable emissions from point sources of biomass derived CO2, which could be utilized for BECCS. Though, in possible future bio-energy system upscaling scenarios, this may be an important consideration.
The BECCS process allows CO2 to be collected and stored directly from the atmosphere, rather than from a fossil source. This implies that any eventual emissions from storage may be recollected and restored simply by reiterating the BECCS-process. This is not possible with CCS alone, as CO2 emitted to the atmosphere cannot be restored by burning more fossil fuel with CCS.
Wikinews has news related to:
[//en.wikinews.org/wiki/Category:Renewable_energy Renewable energy]
|
|