Bcl-2 homologous antagonist killer

BCL2-antagonist/killer 1

PDB rendering based on 2ims.
Identifiers
Symbols BAK1; BAK; BAK-LIKE; BCL2L7; CDN1; MGC117255; MGC3887
External IDs OMIM600516 MGI1097161 HomoloGene917 GeneCards: BAK1 Gene
RNA expression pattern
More reference expression data
Orthologs
Species Human Mouse
Entrez 578 12018
Ensembl ENSG00000030110 ENSMUSG00000057789
UniProt Q16611 Q8C264
RefSeq (mRNA) NM_001188 NM_007523.2
RefSeq (protein) NP_001179 NP_031549.2
Location (UCSC) Chr 6:
33.54 – 33.55 Mb
Chr 17:
27.16 – 27.17 Mb
PubMed search [1] [2]

Bcl-2 homologous antagonist/killer is a protein that in humans is encoded by the BAK1 gene.[1][2] BAK1 orthologs [3] have been identified in most mammals for which complete genome data are available.

The BAK protein is a pro-apoptotic member of the Bcl-2 gene family which is involved in initiating apoptosis. Dysregulation of the BAK gene has been implicated in human gastrointestinal cancers, indicating that the gene plays a part in the pathogenesis of some cancers.[4]

Contents

Function

The protein encoded by this gene belongs to the BCL2 protein family. BCL2 family members form oligomers or heterodimers and act as anti- or pro-apoptotic regulators that are involved in a wide variety of cellular activities. This protein localizes to mitochondria, and functions to induce apoptosis. It interacts with and accelerates the opening of the mitochondrial voltage-dependent anion channel, which leads to a loss in membrane potential and the release of cytochrome c. This protein also interacts with the tumor suppressor P53 after exposure to cell stress.[5]

BAK1 gene variation

Recently, one study of the role of genetics in abdominal aortic aneurism (AAA) showed that different BAK1 variants can exist in both diseased and nondiseased AA tissues compared to matching blood samples.[6] Since its publication, this observation has raised many discussions among scientific community because it seems to jeopardize the current paradigm that all cells have the same genomic DNA. However, BAK1 gene variants in different tissues may be easily explained by the expression of BAK1 gene on chromosome 6 and one its edited copies on chromosome 20. This conjecture reconciles both the current paradigm and the observation of BAK1 gene variation in different tissues.[7][8] However, the authors of the BAK1 gene variations original article have published a response.[7]

Interactions

BAK1 has been shown to interact with BCL2-like 1,[9][10][11][12][13] Bcl-2,[14][15] P53[16] and MCL1.[12][16][17][18]

References

  1. ^ Chittenden T, Harrington EA, O'Connor R, Flemington C, Lutz RJ, Evan GI, Guild BC (May 1995). "Induction of apoptosis by the Bcl-2 homologue Bak". Nature 374 (6524): 733–6. doi:10.1038/374733a0. PMID 7715730. 
  2. ^ Kiefer MC, Brauer MJ, Powers VC, Wu JJ, Umansky SR, Tomei LD, Barr PJ (May 1995). "Modulation of apoptosis by the widely distributed Bcl-2 homologue Bak". Nature 374 (6524): 736–9. doi:10.1038/374736a0. PMID 7715731. 
  3. ^ "OrthoMaM phylogenetic marker: BAK1 coding sequence". http://www.orthomam.univ-montp2.fr/orthomam/data/cds/detailMarkers/ENSG00000030110_BAK1.xml. 
  4. ^ Qiang-Song Tong et al. (2004). "BAK overexpression mediates p53-independent apoptosis inducing effects on human gastric cancer cells". BMC Cancer 4: 33. doi:10.1186/1471-2407-4-33. PMC 481072. PMID 15248898. http://www.biomedcentral.com/1471-2407/4/33. 
  5. ^ "Entrez Gene: BAK1 BCL2-antagonist/killer 1". http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=578. 
  6. ^ Gottlieb B, Chalifour LE, Mitmaker B, Sheiner N, Obrand D, Abraham C, Meilleur M, Sugahara T, Bkaily G, Schweitzer M (July 2009). "BAK1 gene variation and abdominal aortic aneurysms". Hum. Mutat. 30 (7): 1043–7. doi:10.1002/humu.21046. PMID 19514060. 
  7. ^ a b Hatchwell E (January 2010). "BAK1 gene variation and abdominal aortic aneurysms-variants are likely due to sequencing of a processed gene on chromosome 20". Hum. Mutat. 31 (1): 108–9; author reply 110–1. doi:10.1002/humu.21147. PMID 19847788. 
  8. ^ Michel Eduardo Beleza Yamagishi (2009). "A simpler explanation to BAK1 gene variation in Aortic and Blood tissues". arXiv:0909.2321 [q-bio.GN]. 
  9. ^ Rual, Jean-François; Venkatesan Kavitha, Hao Tong, Hirozane-Kishikawa Tomoko, Dricot Amélie, Li Ning, Berriz Gabriel F, Gibbons Francis D, Dreze Matija, Ayivi-Guedehoussou Nono, Klitgord Niels, Simon Christophe, Boxem Mike, Milstein Stuart, Rosenberg Jennifer, Goldberg Debra S, Zhang Lan V, Wong Sharyl L, Franklin Giovanni, Li Siming, Albala Joanna S, Lim Janghoo, Fraughton Carlene, Llamosas Estelle, Cevik Sebiha, Bex Camille, Lamesch Philippe, Sikorski Robert S, Vandenhaute Jean, Zoghbi Huda Y, Smolyar Alex, Bosak Stephanie, Sequerra Reynaldo, Doucette-Stamm Lynn, Cusick Michael E, Hill David E, Roth Frederick P, Vidal Marc (October 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature (England) 437 (7062): 1173–8. doi:10.1038/nature04209. PMID 16189514. 
  10. ^ Zhang, Haichao; Nimmer Paul, Rosenberg Saul H, Ng Shi-Chung, Joseph Mary (August 2002). "Development of a high-throughput fluorescence polarization assay for Bcl-x(L)". Anal. Biochem. (United States) 307 (1): 70–5. doi:10.1016/S0003-2697(02)00028-3. PMID 12137781. 
  11. ^ Whitfield, Jonathan; Harada Kokichi, Bardelle Catherine, Staddon James M (November 2003). "High-throughput methods to detect dimerization of Bcl-2 family proteins". Anal. Biochem. (United States) 322 (2): 170–8. doi:10.1016/j.ab.2003.07.014. PMID 14596824. 
  12. ^ a b Willis, Simon N; Chen Lin, Dewson Grant, Wei Andrew, Naik Edwina, Fletcher Jamie I, Adams Jerry M, Huang David C S (June 2005). "Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins". Genes Dev. (United States) 19 (11): 1294–305. doi:10.1101/gad.1304105. PMC 1142553. PMID 15901672. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1142553. 
  13. ^ Degterev, A; Lugovskoy A, Cardone M, Mulley B, Wagner G, Mitchison T, Yuan J (February 2001). "Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL". Nat. Cell Biol. (England) 3 (2): 173–82. doi:10.1038/35055085. PMID 11175750. 
  14. ^ Lin, Bingzhen; Kolluri Siva Kumar, Lin Feng, Liu Wen, Han Young-Hoon, Cao Xihua, Dawson Marcia I, Reed John C, Zhang Xiao-kun (February 2004). "Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3". Cell (United States) 116 (4): 527–40. doi:10.1016/S0092-8674(04)00162-X. PMID 14980220. 
  15. ^ Enyedy, I J; Ling Y, Nacro K, Tomita Y, Wu X, Cao Y, Guo R, Li B, Zhu X, Huang Y, Long Y Q, Roller P P, Yang D, Wang S (December 2001). "Discovery of small-molecule inhibitors of Bcl-2 through structure-based computer screening". J. Med. Chem. (United States) 44 (25): 4313–24. doi:10.1021/jm010016f. PMID 11728179. 
  16. ^ a b Leu, J I-Ju; Dumont Patrick, Hafey Michael, Murphy Maureen E, George Donna L (May 2004). "Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex". Nat. Cell Biol. (England) 6 (5): 443–50. doi:10.1038/ncb1123. PMID 15077116. 
  17. ^ Weng, Changjiang; Li Yuan, Xu Dan, Shi Yong, Tang Hong (March 2005). "Specific cleavage of Mcl-1 by caspase-3 in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in Jurkat leukemia T cells". J. Biol. Chem. (United States) 280 (11): 10491–500. doi:10.1074/jbc.M412819200. PMID 15637055. 
  18. ^ Bae, J; Leo C P, Hsu S Y, Hsueh A J (August 2000). "MCL-1S, a splicing variant of the antiapoptotic BCL-2 family member MCL-1, encodes a proapoptotic protein possessing only the BH3 domain". J. Biol. Chem. (UNITED STATES) 275 (33): 25255–61. doi:10.1074/jbc.M909826199. PMID 10837489. 

Further reading