Autotroph

An autotroph[α],(self-feeding) or producer, is an organism that produces complex organic compounds (such as carbohydrates, fats, and proteins) from simple inorganic molecules using energy from light (by photosynthesis) or inorganic chemical reactions (chemosynthesis). They are the producers in a food chain, such as plants on land or algae in water. They are able to make their own food and can fix carbon. Therefore, they do not use organic compounds as an energy source or a carbon source. Autotrophs can reduce carbon dioxide (add hydrogen to it) to make organic compounds. The reduction of carbon dioxide, a low-energy compound, creates a store of chemical energy. Most autotrophs use water as the reducing agent, but some can use other hydrogen compounds such as hydrogen sulfide. An autotroph converts physical energy from sun light (in case of green plants) into chemical energy in the form of reduced carbon.

Autotrophs can be phototrophs or lithotrophs (chemoautotrophs). Phototrophs use light as an energy source, while lithotrophs oxidize inorganic compounds, such as hydrogen sulfide, elemental sulfur, ammonium and ferrous iron. Phototrophs and lithotrophs use a portion of the ATP produced during photosynthesis or the oxidation of inorganic compounds to reduce NADP+ to NADPH in order to form organic compounds.[1]

Contents

Ecology

Autotrophs are fundamental to the food chains of all ecosystems in the world. They take energy from the environment in the form of sunlight or inorganic chemicals and use it to create energy-rich molecules such as carbohydrates. This mechanism is called primary production. Other organisms, called heterotrophs, take in autotrophs as food to carry out functions necessary for their life. Thus, heterotrophs — all animals, almost all fungi, as well as most bacteria and protozoa — depend on autotrophs for the energy and raw materials they need. Heterotrophs obtain energy by breaking down organic molecules (carbohydrates, fats, and proteins) obtained in food. Carnivorous organisms ultimately rely on autotrophs because the nutrients obtained from their heterotroph prey come from autotrophs they consumed.

Most ecosystems are supported by the autotrophic primary production of plants that capture photons initially released by nuclear fusion reactions in the sun. The process of photosynthesis splits a water molecule (H2O), releasing oxygen (O2) into the atmosphere, and reducing carbon dioxide (CO2) to release the hydrogen atoms that fuel the metabolic process of primary production. Plants convert and store the energy of the photon into the chemical bonds of simple sugars during photosynthesis. These plant sugars are polymerized for storage as long-chain carbohydrates, including other sugars, starch, and cellulose; glucose is also used to make fats and proteins. When autotrophs are eaten by heterotrophs, i.e., consumers such as animals, the carbohydrates, fats, and proteins contained in them become energy sources for the heterotrophs.[2] Proteins can be made using nitrates, sulfates, and phosphates in the soil.[3][4]

Variants

Some organisms rely on organic compounds as a source of carbon, but are able to use light or inorganic compounds as a source of energy. Such organisms are not defined as autotrophic, but rather as heterotrophic. An organism that obtains carbon from organic compounds but obtains energy from light is called a photoheterotroph, while an organism that obtains carbon from organic compounds but obtains energy from the oxidation of inorganic compounds is termed a chemoheterotroph or chemolithoheterotroph.

Evidence suggests that some fungi may also obtain energy from radiation. Such radiotrophic fungi were found growing inside a reactor of the Chernobyl nuclear power plant.[5]

Flowchart

See also

References

Footnotes

α. ^ The word autotroph comes from the Greek autos = self and trophe = nutrition, related to trephein = to make solid, congeal, thicken