|
|
Unit system: | SI derived unit |
Unit of... | Electric charge |
Symbol: | C |
Named after: | Charles-Augustin de Coulomb |
|
|
1 C in... | is equal to... |
SI base units | 1 A s |
CGS units | 2997924580 statC |
Atomic units | 6.24150965(16)×1018 e[1] |
The coulomb (symbol: C) is the SI derived unit of electric charge. It is defined as the charge transported by a steady current of one ampere in one second:
One coulomb is also the amount of excess charge on the positive side of a capacitance of one farad charged to a potential difference of one volt:
Contents |
This SI unit is named after Charles-Augustin de Coulomb. As with every SI unit whose name is derived from the proper name of a person, the first letter of its symbol is upper case (C). When an SI unit is spelled out in English, it should always begin with a lower case letter (coulomb), except where any word would be capitalized, such as at the beginning of a sentence or in capitalized material such as a title. Note that "degree Celsius" conforms to this rule because the "d" is lowercase. —Based on The International System of Units, section 5.2.[2]
In the SI system, the coulomb is defined in terms of the ampere and second: 1C = 1A × 1s.[3] The second is defined in terms of a frequency which is naturally emitted by caesium atoms.[4] The ampere is defined using Ampère's force law;[5] the definition relies in part on the mass of the international prototype kilogram, a metal cylinder housed in France.[6] In practice, the watt balance is used to measure amperes with the highest possible accuracy.[6]
Submultiples | Multiples | |||||
---|---|---|---|---|---|---|
Value | Symbol | Name | Value | Symbol | Name | |
10−1 C | dC | decicoulomb | 101 C | daC | decacoulomb | |
10−2 C | cC | centicoulomb | 102 C | hC | hectocoulomb | |
10−3 C | mC | millicoulomb | 103 C | kC | kilocoulomb | |
10−6 C | µC | microcoulomb | 106 C | MC | megacoulomb | |
10−9 C | nC | nanocoulomb | 109 C | GC | gigacoulomb | |
10−12 C | pC | picocoulomb | 1012 C | TC | teracoulomb | |
10−15 C | fC | femtocoulomb | 1015 C | PC | petacoulomb | |
10−18 C | aC | attocoulomb | 1018 C | EC | exacoulomb | |
10−21 C | zC | not used | 1021 C | ZC | zettacoulomb | |
10−24 C | yC | not used | 1024 C | YC | yottacoulomb | |
Common multiples are in bold face. |
See also SI prefix.
The elementary charge, the charge of a proton (equivalently, the negative of the charge of an electron), is approximately 1.602176487(40)×10−19 C.[1] In SI, the elementary charge in coulombs is an approximate value: no experiment can be infinitely accurate. However, in other unit systems, the elementary charge has an exact value by definition, and other charges are ultimately measured relative to the elementary charge.[7] For example, in conventional electrical units, the values of the Josephson constant KJ and von Klitzing constant RK are exact defined values (written KJ-90 and RK-90), and it follows that the elementary charge is also an exact defined value in this unit system.[7] Specifically, exactly.[7] SI itself may someday change its definitions in a similar way.[7] For example, one possible proposed redefinition is "the ampere...is [defined] such that the value of the elementary charge e (charge on a proton) is exactly 1.602176487×10−19 coulomb"[8] This proposal is not yet accepted as part of the SI system: The SI definitions are unlikely to change until at least 2015.[9]
|