In mathematics, an Artin group (or generalized braid group) is a group with a presentation of the form
where
For , denotes an alternating product of and of length , beginning with . For example,
and
If , then there is (by convention) no relation for and .
The integers can be organized into a symmetric matrix, known as the Coxeter matrix of the group. Each Artin group has as a quotient the Coxeter group with the same set of generators and Coxeter matrix. The kernel of the homomorphism to the associated Coxeter group, known as the pure Artin group, is generated by relations of the form .
Contents |
Braid groups are examples of Artin groups, with Coxeter matrix and for Several important classes of Artin groups can be defined in terms of the properties of the Coxeter matrix.
If M is a Coxeter matrix of finite type, so that the corresponding Coxeter group W = A(M) is finite, then the Artin group A = A(M) is called an Artin group of finite type. The 'irreducible types' are labeled as An , Bn = Cn , Dn , I2(n) , F4 , E6 , E7 , E8 , H3 , H4 . A pure Artin group of finite type can be realized as the fundamental group of the complement of a finite hyperplane arrangement in Cn. Pierre Deligne and Brieskorn-Saito have used this geometric description to compute the center of A, its cohomology, and to solve the word and conjugacy problems.
If M is a matrix all of whose elements are equal to 2 or ∞, then the corresponding Artin group is called a right-angled Artin group. For this class of Artin groups, a different labeling scheme is commonly used. Any graph Γ on n vertices labeled 1, 2, …, n defines a matrix M, for which mij = 2 if i and j are connected by an edge in Γ, and mij = ∞ otherwise. The right-angled Artin group A(Γ) associated with the matrix M has n generators x1, x2, …, xn and relations
The class of right-angled Artin groups includes the free groups of finite rank, corresponding to a graph with no edges, and the finitely-generated free abelian groups, corresponding to a complete graph. Mladen Bestvina and Noel Brady constructed a nonpositively curved cubical complex K whose fundamental group is a given right-angled Artin group A(Γ). They applied Morse-theoretic arguments to their geometric description of Artin groups and exhibited first known examples of groups with the property (FP2) that are not finitely presented.