Anything In Anything

Anything In Anything or AYIYA is a tunneling protocol for connecting islands of IP traffic with each other. The protocol addresses the following problems:

The draft itself covers the deep details on how this is accomplished and how the protocol works in detail. Below are some scenarios on how this protocol can be used to solve some problems.

Contents

Using AYIYA for tunnel brokers

Many users are currently located behind NATs which prohibit[1][2] the usage of protocol 41 tunnels (IPv6 tunnelled in IPv4, either RFC 4213 or RFC 3056) unless they manually reconfigure their NAT setup. In some cases, this is impossible as the NAT cannot be configured to forward protocol 41 to a specific host. There might also be cases when multiple endpoints are behind the same NAT, when multiple NATs are used, or when the user has no control at all over the NAT setup. This is an undesired situation as it limits the deployment of IPv6, which was meant to solve the problem of the disturbance in end to end communications caused by NATs, which were created because of limited address space in the first place.

This problem can be solved by tunneling the IPv6 packets over either UDP, TCP or even SCTP. Taking into consideration that multiple separate endpoints could be behind the same NAT and/or that the public endpoint can change on the fly, there is also a need to identify the endpoint that certain packets are coming from and endpoints need to be able to change e.g. source addresses of the transporting protocol on the fly while still being identifiable as the same endpoint. The protocol described in this document is independent of the transport and payload's protocol. An example could be IPv6-in-UDP-in-IPv4, which is a typical setup that can be used by IPv6 tunnel brokers.

Using AYIYA for mobility

AYIYA could be used in a mobility situation for tunneling its Home Address back to the Home Agent, thus acting as a normal tunnel situation and for the Remote Host it seems the communication is happening directly. In this case the remote host doesn't need to support AYIYA. When the Remote Host does support AYIYA, it could also directly setup a tunnel with the mobile host, circumventing that traffic is sent over the Home Agent. The Remote Host can determine if a host supports AYIYA by looking up properties in DNS and use a Public/Private Key algorithm to authenticate the packets without prior information, e.g. the keys, needing to be available. The following diagram illustrates this.

Using AYIYA to provide IPv6 for an endhost is in effect already providing mobility for that endhost as it can take its IPv6 address along anywhere it wants to go as it signals the Home Agent when the tunnel endpoint changes so that the Home Agent knows where to send new packets.

Packet format

  Bits 0 - 3 4 - 7 8 - 11 12 - 15 16 - 19 20 - 23 24 - 31
0 Identity Length Identity Type Signature Length Hash Method Authentication Method Operation Code Next Header
32 Epoch Time
   
Identity
 
   
Signature
 

For IPv6 over IPv4-UDP operation, as in general use, the Identity is the IPv6 Address of the endpoint (16 bytes) and the signature is an SHA1 hash (20 bytes). The header is then a total of 8 + 16 + 20 = 52 bytes. This allows an MTU of 1428 over Ethernet (MTU : 1500).

More details on the SixXS site, and of course in the draft. [1]

Implementations

The following implementations are available: AICCU

References

  1. ^ a b AYIYA
  2. ^ RFC 4891

External links