An and–or tree is a graphical representation of the reduction of problems (or goals) to conjunctions and disjunctions of subproblems (or subgoals).
Contents |
The and-or tree:
represents the search space for solving the problem P, using the goal-reduction methods:
Given an initial problem P0 and set of problem solving methods of the form:
the associated and-or tree is a set of labelled nodes such that:
A node N, labelled by a problem P, is a success node if there is a method of the form P if nothing (i.e., P is a "fact"). The node is a failure node if there is no method for solving P.
If all of the children of a node N, conjoined by the same arc, are success nodes, then the node N is also a success node. Otherwise the node is a failure node.
An and-or tree specifies only the search space for solving a problem. Different search strategies for searching the space are possible. These include searching the tree depth-first, breadth-first, or best-first using some measure of desirability of solutions. The search strategy can be sequential, searching or generating one node at a time, or parallel, searching or generating several nodes in parallel.
The methods used for generating and-or trees are propositional logic programs (without variables). In the case of logic programs containing variables, the solutions of conjoint sub-problems must be compatible. Subject to this complication, sequential and parallel search strategies for and-or trees provide a computational model for executing logic programs.
And–or trees can also be used to represent the search spaces for two-person games. The root node of such a tree represents the problem of one of the players winning the game, starting from the initial state of the game. Given a node N, labelled by the problem P of the player winning the game from a particular state of play, there exists a single set of conjoint children nodes, corresponding to all of the opponents responding moves. For each of these children nodes, there exists a set of non-conjoint children nodes, corresponding to all of the player's defending moves.
For solving game trees with proof-number search family of algorithms, game trees are to be mapped to And/Or trees. MAX-nodes (i.e. maximizing player to move) are represented as OR nodes, MIN-nodes map to AND nodes. The mapping is possible, when the search is done with only a binary goal, which usually is "player to move wins the game".