Ampacity

Ampacity is the maximum amount of electrical current a conductor or device can carry before sustaining immediate or progressive deterioration. Also described as current rating or current-carrying capacity, ampacity is the RMS electric current which a device can continuously carry while remaining within its temperature rating. The ampacity of a cable depends on:

All electrical conductors have some resistance to the flow of electricity, and electric current flowing through them causes voltage drop and power dissipation, which heats the cable. Copper or aluminum can conduct a large amount of current before melting, but long before the conductors melt, their insulation would be damaged by the heat.

The ampacity for a power cable is thus based on physical and electrical properties of the material & construction of the conductor and of its insulation, ambient temperature, and environmental conditions adjacent to the cable. Having a large overall surface area may dissipate heat well if the environment can absorb the heat.

In a long run of cable, different conditions govern, and installation regulations normally specify that the most severe condition along the run will govern the cable's rating. Cables run in wet or oily locations may carry a lower temperature rating than in a dry installation. Derating is necessary for multiple circuits in close proximity. When multiple cables are near, each contributes heat to the others and diminishes the amount of cooling air that can flow past the individual cables. The overall ampacity of the insulated conductors in a bundle of more than 3 must be derated, whether in a raceway or cable. Usually the derating factor is tabulated in a nation's wiring regulations.

Depending on the type of insulating material, common maximum allowable temperatures at the surface of the conductor are 60, 75, and 90 °C, often with an ambient air temperature of 30 °C. In the United States, 105 °C is allowed with ambient of 40 °C, for larger power cables, especially those operating at more than 2 kV. Likewise, specific insulations are rated 150, 200, or 250 °C.

The allowed current in cables generally needs to be decreased (derated) when the cable is covered with fireproofing material. For example, the United States National Electric Code, Table 310-16, specifies that up to three 8 AWG copper wires having a common insulating material (THWN) in a raceway, cable, or direct burial has an ampacity of 50 A when the ambient air is 30°C, the conductor surface temperature allowed to be 75°C. A single insulated conductor in air has 70 A rating.

Ampacity rating is normally for continuous current, and short periods of overcurrent occur without harm in most cabling systems. The acceptable magnitude and duration of overcurrent is a more complex topic than ampacity.

When designing an electrical system, one will normally need to know the current rating for the following:

Some devices are limited by power rating, and when this power rating occurs below their current limit, it is not necessary to know the current limit to design a system. A common example of this is lightbulb holders.

Current rating

For electronic components (such as transistors, voltage regulators, and the like), the term current rating is more-commonly used than ampacity, but the considerations are broadly similar. However the tolerance of short-term overcurrent is near zero for semiconductor devices, as their thermal capacities are extremely small.

See also

External links