Abstract analytic number theory

Abstract analytic number theory is a branch of mathematics which takes the ideas and techniques of classical analytic number theory and applies them to a variety of different mathematical fields. The classical prime number theorem serves as a prototypical example, and the emphasis is on abstract asymptotic distribution results. The theory was invented and developed by John Knopfmacher in the early 1970s.

Contents

Arithmetic semigroups

The fundamental notion involved is that of an arithmetic semigroup, which is a commutative monoid G satisfying the following properties:

a = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}
where the pi are distinct elements of P, the αi are positive integers, r may depend on a, and two factorisations are considered the same if they differ only by the order of the factors indicated. The elements of P are called the primes of G.

Examples

Methods and techniques

The use of arithmetic functions and zeta functions is extensive. The idea is to extend the various arguments and techniques of arithmetic functions and zeta functions in classical analytic number theory to the context of an arbitrary arithmetic semigroup which may satisfy one or more additional axioms. Such a typical axiom is the following, usually called "Axiom A" in the literature:

For any arithmetic semigroup which satisfies Axiom A, we have the following abstract prime number theorem:

\pi_G(x) \sim \frac{x^{\delta}}{\delta \log x} \mbox { as } x \rightarrow \infin

where πG(x) = total number of elements p in P of norm |p| ≤ x.

The notion of arithmetical formation provides a generalisation of the ideal class group in algebraic number theory and allows for abstract asymptotic distribution results under constraints. In the case of number fields, for example, this is Chebotarev's density theorem.

References