An abstract Wiener space is a mathematical object in measure theory, used to construct a "decent" (strictly positive and locally finite) measure on an infinite-dimensional vector space. It is named after the American mathematician Norbert Wiener. Wiener's original construction only applied to the space of real-valued continuous paths on the unit interval, known as classical Wiener space; Leonard Gross provided the generalization to the case of a general separable Banach space.
Contents |
Let H be a separable Hilbert space. Let E be a separable Banach space. Let i : H → E be an injective continuous linear map with dense image (i.e., the closure of i(H) in E is E itself) that radonifies the canonical Gaussian cylinder set measure γH on H. Then the triple (i, H, E) (or simply i : H → E) is called an abstract Wiener space. The measure γ induced on E is called the abstract Wiener measure of i : H → E.
The Hilbert space H is sometimes called the Cameron–Martin space or reproducing kernel Hilbert space.
Some sources (e.g. Bell (2006)) consider H to be a densely embedded Hilbert subspace of the Banach space E, with i simply the inclusion of H into E. There is no loss of generality in taking this "embedded spaces" viewpoint instead of the "different spaces" viewpoint given above.
Arguably the most frequently-used abstract Wiener space is the space of continuous paths, and is known as classical Wiener space. This is the abstract Wiener space with
with inner product
E = C0([0, T]; Rn) with norm
and i : H → E the inclusion map. The measure γ is called classical Wiener measure or simply Wiener measure.