Absolute risk reduction

In epidemiology, the absolute risk reduction or risk difference is the decrease in risk of a given activity or treatment in relation to a control activity or treatment.[1] It is the inverse of the number needed to treat.[2]

For instance, consider a hypothetical drug which reduces the relative risk of colon cancer by 50% over five years. Even without the drug, colon cancer is fairly rare, maybe 1 in 3,000 in every five-year period. The rate of colon cancer for a five-year treatment with the drug is therefore 1/6,000, as by treating 6,000 people with the drug, one can expect to reduce the number of colon cancer cases from 2 to 1.

In general, absolute risk reduction is usually computed with respect to two treatments A and B, with A typically a drug and B a placebo (in our example above, A is a 5-year treatment with the hypothetical drug, and B is treatment with placebo, i.e. no treatment). A defined endpoint has to be specified (in our example: the appearance of colon cancer in the 5 year period). If the probabilities pA and pB of this endpoint under treatments A and B, respectively, are known, then the absolute risk reduction is computed as (pB - pA).

The inverse of the absolute risk reduction, NNT, is an important measure in pharmacoeconomics. If a clinical endpoint is devastating enough (e.g. death, heart attack), drugs with a low absolute risk reduction may still be indicated in particular situations. If the endpoint is minor, health insurers may decline to reimburse drugs with a low absolute risk reduction.

Contents

Presenting results

The raw calculation of absolute risk reduction is a probability (0.003 fewer cases per person, using the colon cancer example above). Authors such as Ben Goldacre believe that this information is best presented as a natural number in the context of the baseline risk ("reduces 2 cases of colon cancer to 1 case if you treat 6,000 people for five years").[3] Natural numbers, which are used in the number needed to treat approach, are easily understood by non-experts.

Worked example

  Example 1: risk reduction Example 2: risk increase
Experimental group (E) Control group (C) Total (E) (C)
Events (E) EE = 15 CE = 100 115 EE = 75 CE = 100
Non-events (N) EN = 135 CN = 150 285 EN = 75 CN = 150
Total subjects (S) ES = EE + EN = 150 CS = CE + CN = 250 400 ES = 150 CS = 250
Event rate (ER) EER = EE / ES = 0.1, or 10% CER = CE / CS = 0.4, or 40% N/A EER = 0.5 (50%) CER = 0.4 (40%)
Equation Variable Abbr. Example 1 Example 2
CER − EER < 0: absolute risk reduction ARR (−)0.3, or (−)30% N/A
> 0: absolute risk increase ARI N/A 0.1, or 10%
(CER − EER) / CER < 0: relative risk reduction RRR (−)0.75, or (−)75% N/A
> 0: relative risk increase RRI N/A 0.25, or 25%
1 / (CER − EER) < 0: number needed to treat NNT (−)3.33 N/A
> 0: number needed to harm NNH N/A 10
EER / CER relative risk RR 0.25 1.25
(EE / EN) / (CE / CN) odds ratio OR 0.167 1.5
EER − CER attributable risk AR (−)0.30, or (−)30% 0.1, or 10%
(RR − 1) / RR attributable risk percent ARP N/A 20%
1 − RR (or 1 − OR) preventive fraction PF 0.75, or 75% N/A

See also

References

  1. ^ "An overview of measurements in epidemiology". http://www.medepi.net/meta/lectures/An_Overview_of_Measurements_in_Epidemiology_V2_2003.pdf. Retrieved 2010-02-01. 
  2. ^ Laupacis, A; Sackett, DL; Roberts, RS (1988). "An assessment of clinically useful measures of the consequences of treatment.". The New England journal of medicine 318 (26): 1728–33. doi:10.1056/NEJM198806303182605. PMID 3374545. 
  3. ^ Ben Goldacre (2008). Bad Science. New York: Fourth Estate. pp. 239–260. ISBN 0-00-724019-8. 

External links