ACAT1
For the human acetyl-coA cholesterol acyltransferase messenger RNA, see
ACAT1 mRNA.
Acetyl-CoA acetyltransferase, mitochondrial also known as acetoacetyl-CoA thiolase, is an enzyme that in humans is encoded by the ACAT1 (Acetyl-Coenzyme A acetyltransferase 1) gene.[1]
Acetyl-Coenzyme A acetyltransferase 1 is an acetyl-CoA C-acetyltransferase enzyme.
Function
This gene encodes a mitochondrially localized enzyme that catalyzes the reversible formation of acetoacetyl-CoA from two molecules of acetyl-CoA.[1]
Clinical significance
Defects in this gene are associated with 3-ketothiolase deficiency, an inborn error of isoleucine catabolism characterized by urinary excretion of 2-methyl-3-hydroxybutyric acid, 2-methylacetoacetic acid, tiglylglycine, and butanone.[1]
References
Further reading
- Locke JA, Wasan KM, Nelson CC, et al. (2008). "Androgen-mediated cholesterol metabolism in LNCaP and PC-3 cell lines is regulated through two different isoforms of acyl-coenzyme A:Cholesterol Acyltransferase (ACAT).". Prostate 68 (1): 20–33. doi:10.1002/pros.20674. PMID 18000807.
- Fukao T, Boneh A, Aoki Y, Kondo N (2008). "A novel single-base substitution (c.1124A>G) that activates a 5-base upstream cryptic splice donor site within exon 11 in the human mitochondrial acetoacetyl-CoA thiolase gene.". Mol. Genet. Metab. 94 (4): 417–21. doi:10.1016/j.ymgme.2008.04.014. PMID 18511318.
- Reynolds CA, Hong MG, Eriksson UK, et al. (2010). "Analysis of lipid pathway genes indicates association of sequence variation near SREBF1/TOM1L2/ATPAF2 with dementia risk.". Hum. Mol. Genet. 19 (10): 2068–78. doi:10.1093/hmg/ddq079. PMID 20167577.
- Haapalainen AM, Meriläinen G, Pirilä PL, et al. (2007). "Crystallographic and kinetic studies of human mitochondrial acetoacetyl-CoA thiolase: the importance of potassium and chloride ions for its structure and function.". Biochemistry 46 (14): 4305–21. doi:10.1021/bi6026192. PMID 17371050.
- Chen J, Zhao XN, Yang L, et al. (2008). "RNA secondary structures located in the interchromosomal region of human ACAT1 chimeric mRNA are required to produce the 56-kDa isoform.". Cell Res. 18 (9): 921–36. doi:10.1038/cr.2008.66. PMC 3086790. PMID 18542101. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3086790.
- Raman J, Fritz TA, Gerken TA, et al. (2008). "The catalytic and lectin domains of UDP-GalNAc:polypeptide alpha-N-Acetylgalactosaminyltransferase function in concert to direct glycosylation site selection.". J. Biol. Chem. 283 (34): 22942–51. doi:10.1074/jbc.M803387200. PMID 18562306.
- Xin C, Yan-Fu W, Ping H, et al. (2009). "Study of the insulin signaling pathways in the regulation of ACAT1 expression in cultured macrophages.". Cell Biol. Int. 33 (5): 602–6. doi:10.1016/j.cellbi.2009.02.011. PMID 19269342.
- Li Q, Bai H, Fan P (2008). "[Analysis of acyl-coenzyme A: cholesterol acyltransferase 1 polymorphism in patients with endogenous hypertriglyceridemia in Chinese population]". Zhonghua Yi Xue Yi Chuan Xue Za Zhi 25 (2): 206–10. PMID 18393248.
- Guo ZY, Chang CC, Chang TY (2007). "Functionality of the seventh and eighth transmembrane domains of acyl-coenzyme A:cholesterol acyltransferase 1.". Biochemistry 46 (35): 10063–71. doi:10.1021/bi7011367. PMID 17691824.
- Fukao T, Yamaguchi S, Orii T, Hashimoto T (1995). "Molecular basis of beta-ketothiolase deficiency: mutations and polymorphisms in the human mitochondrial acetoacetyl-coenzyme A thiolase gene.". Hum. Mutat. 5 (2): 113–20. doi:10.1002/humu.1380050203. PMID 7749408.
- Barbe L, Lundberg E, Oksvold P, et al. (2008). "Toward a confocal subcellular atlas of the human proteome.". Mol. Cell Proteomics 7 (3): 499–508. doi:10.1074/mcp.M700325-MCP200. PMID 18029348.
- Fukao T, Nguyen HT, Nguyen NT, et al. (2010). "A common mutation, R208X, identified in Vietnamese patients with mitochondrial acetoacetyl-CoA thiolase (T2) deficiency.". Mol. Genet. Metab. 100 (1): 37–41. doi:10.1016/j.ymgme.2010.01.007. PMID 20156697.
- Hongo S, Watanabe T, Arita S, et al. (2009). "Leptin modulates ACAT1 expression and cholesterol efflux from human macrophages.". Am. J. Physiol. Endocrinol. Metab. 297 (2): E474-82. doi:10.1152/ajpendo.90369.2008. PMID 19625677.
- Antalis CJ, Arnold T, Lee B, et al.. "Docosahexaenoic acid is a substrate for ACAT1 and inhibits cholesteryl ester formation from oleic acid in MCF-10A cells.". Prostaglandins Leukot. Essent. Fatty Acids 80 (2-3): 165–71. doi:10.1016/j.plefa.2009.01.001. PMID 19217763.
- Bzoma B, Debska-SlizieÅ„ A, Dudziak M, et al. (2008). "[Genetic predisposition to systemic complications of arterial hypertension in maintenance haemodialysis patients]". Pol. Merkur. Lekarski 25 (147): 209–16. PMID 19112833.
- Kanome T, Watanabe T, Nishio K, et al. (2008). "Angiotensin II upregulates acyl-CoA:cholesterol acyltransferase-1 via the angiotensin II Type 1 receptor in human monocyte-macrophages.". Hypertens. Res. 31 (9): 1801–10. doi:10.1291/hypres.31.1801. PMID 18971559.
- Ruaño G, Bernene J, Windemuth A, et al. (2009). "Physiogenomic comparison of edema and BMI in patients receiving rosiglitazone or pioglitazone.". Clin. Chim. Acta 400 (1-2): 48–55. doi:10.1016/j.cca.2008.10.009. PMID 18996102.
- Thümmler S, Dupont D, Acquaviva C, et al. (2010). "Different clinical presentation in siblings with mitochondrial acetoacetyl-CoA thiolase deficiency and identification of two novel mutations.". Tohoku J. Exp. Med. 220 (1): 27–31. PMID 20046049.
- An S, Jang YS, Park JS, et al. (2008). "Inhibition of acyl-coenzyme A:cholesterol acyltransferase stimulates cholesterol efflux from macrophages and stimulates farnesoid X receptor in hepatocytes.". Exp. Mol. Med. 40 (4): 407–17. PMID 18779653.
- Ewing RM, Chu P, Elisma F, et al. (2007). "Large-scale mapping of human protein-protein interactions by mass spectrometry.". Mol. Syst. Biol. 3 (1): 89. doi:10.1038/msb4100134. PMC 1847948. PMID 17353931. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1847948.
PDB gallery
|
|
|
2ib8: Crystallographic and kinetic studies of human mitochondrial acetoacetyl-CoA thiolase (T2): the importance of potassium and chloride for its structure and function
|
|
2ibw: Crystallographic and kinetic studies of human mitochondrial acetoacetyl-CoA thiolase (T2): the importance of potassium and chloride for its structure and function
|
|
2ib7: Crystallographic and kinetic studies of human mitochondrial acetoacetyl-CoA thiolase (T2): the importance of potassium and chloride for its structure and function
|
|
2iby: Crystallographic and kinetic studies of human mitochondrial acetoacetyl-CoA thiolase (T2): the importance of potassium and chloride for its structure and function
|
|
2ibu: Crystallographic and kinetic studies of human mitochondrial acetoacetyl-CoA thiolase (T2): the importance of potassium and chloride for its structure and function
|
|
2ib9: Crystallographic and kinetic studies of human mitochondrial acetoacetyl-CoA thiolase (T2): the importance of potassium and chloride for its structure and function
|
|
2f2s: Human mitochondrial acetoacetyl-CoA thiolase
|
|
|
|
This article incorporates text from the United States National Library of Medicine, which is in the public domain.