IEEE 802.15 is a working group of the Institute of Electrical and Electronics Engineers (IEEE) IEEE 802 standards committee which specifies Wireless Personal Area Network (WPAN) standards. It includes seven task groups.
Task group one is based on Bluetooth technology. It defines physical layer (PHY) and Media Access Control (MAC) specification for wireless connectivity with fixed, portable and moving devices within or entering personal operating space. Standards were issued in 2003 and 2005.[1][2]
Task group two addresses the coexistence of wireless personal area networks (WPAN) with other wireless devices operating in unlicensed frequency bands such as wireless local area networks (WLAN). The IEEE 802.15.2-2003 standard was published in 2003[3] and task group two went into "hibernation".[4]
IEEE 802.15.3-2003 is a MAC and PHY standard for high-rate (11 to 55 Mbit/s) WPANs.
IEEE 802.15.3a was an attempt to provide a higher speed UWB PHY enhancement amendment to IEEE 802.15.3 for applications which involve imaging and multimedia. The members of the task group were not able to come to an agreement choosing between two technology proposals, Multi-band Orthogonal Frequency Division Multiplexing (MB-OFDM) and Direct Sequence UWB (DS-UWB), on the table backed by two different industry alliances and was withdrawn in January 2006.
IEEE 802.15.3b-2005 amendment was released on May 5, 2006. It enhanced 802.15.3 to improve implementation and interoperability of the MAC. This will include minor optimizations while preserving backward compatibility. In addition, this amendment corrected errors, clarified ambiguities, and added editorial clarifications.
IEEE 802.15.3c-2009 was published on September 11, 2009. The task group TG3c developed a millimeter-wave-based alternative physical layer (PHY) for the existing 802.15.3 Wireless Personal Area Network (WPAN) Standard 802.15.3-2003. The IEEE 802.15.3 Task Group 3c (TG3c) was formed in March 2005. This mmWave WPAN operates in clear band including 57โ64 GHz unlicensed band defined by FCC 47 CFR 15.255. The millimeter-wave WPAN will allow high coexistence (close physical spacing) with all other microwave systems in the 802.15 family of WPANs. In addition, the millimeter-wave WPAN allows very high data rate over 2 Gbit/s applications such as high speed internet access, streaming content download (video on demand, HDTV, home theater, etc.), real time streaming and wireless data bus for cable replacement. Optional data rates in excess of 3 Gbit/s will be provided.
IEEE 802.15.4-2003 (Low Rate WPAN) deals with low data rate but very long battery life (months or even years) and very low complexity. The standard defines both the physical (Layer 1) and data-link (Layer 2) layers of the OSI model. The first edition of the 802.15.4 standard was released in May 2003. Several standardized and proprietary networks (or mesh) layer protocols run over 802.15.4-based networks, including IEEE 802.15.5, ZigBee, 6LoWPAN, WirelessHART, and ISA100.11a.
IEEE 802.15.4a (formally called IEEE 802.15.4a-2007) is an amendment to IEEE 802.15.4 specifying additional physical layers (PHYs) to the original standard. The principal interest was in providing higher precision ranging and location capability (1 meter accuracy and better), higher aggregate throughput, adding scalability to data rates, longer range, and lower power consumption and cost. The selected baselines are two optional PHYs consisting of a UWB Pulse Radio (operating in unlicensed UWB spectrum) and a Chirp Spread Spectrum (operating in unlicensed 2.4 GHz spectrum). The Pulsed UWB Radio is based on Continuous Pulsed UWB technology (see C-UWB) and will be able to deliver communications and high precision ranging.[5]
IEEE 802.15.4b was approved in June 2006 and was published in September 2006 as IEEE 802.15.4-2006. The IEEE 802.15 task group 4b was chartered to create a project for specific enhancements and clarifications to the IEEE 802.15.4-2003 standard, such as resolving ambiguities, reducing unnecessary complexity, increasing flexibility in security key usage, considerations for newly available frequency allocations, and others.
IEEE 802.15.4c was approved in 2008 and was published in January 2009. This defines a PHY amendment adds new rf spectrum specifications to address the Chinese regulatory changes which have opened the 314-316 MHz, 430-434 MHz, and 779-787 MHz bands for Wireless PAN use within China.
IEEE 802.15.4c was approved in 2008 and was published in January 2009. The IEEE 802.15 Task Group 4d was chartered to define an amendment to the existing standard 802.15.4-2006. The amendment defines a new PHY and such changes to the MAC as are necessary to support a new frequency allocation (950 MHz -956 MHz) in Japan while coexisting with passive tag systems in the band.
The IEEE 802.15 Task Group 4e is chartered to define a MAC amendment to the existing standard 802.15.4-2006. The intent of this amendment is to enhance and add functionality to the 802.15.4-2006 MAC to a) better support the industrial markets and b) permit compatibility with modifications being proposed within the Chinese WPAN.
The IEEE 802.15.4f Active RFID System Task Group is chartered to define new wireless Physical (PHY) layer(s) and enhancements to the 802.15.4-2006 standard MAC layer which are required to support new PHY(s) for Active RFID System bi-directional and location determination applications.
IEEE 802.15.4g Smart Utility Networks (SUN) Task Group is chartered to create a PHY amendment to 802.15.4 to provide a global standard that facilitates very large scale process control applications such as the utility smart-grid network capable of supporting large, geographically diverse networks with minimal infrastructure, with potentially millions of fixed endpoints.
IEEE 802.15.5 provides the architectural framework enabling WPAN devices to promote interoperable, stable, and scalable wireless mesh networking. This standard is composed of two parts: low-rate WPAN mesh and high-rate WPAN mesh networks. The low-rate mesh is built on IEEE 802.15.4-2006 MAC, while the high rate mesh utilizes IEEE 802.15.3/3b MAC. The common features of both meshes include network initialization, addressing, and multihop unicasting. In addition, the low-rate mesh supports multicasting, reliable broadcasting, portability support, trace route and energy saving function, and the high rate mesh supports multihop time-guaranteed service.
As of December 2011, the IEEE 802.15.6 task group has approved a draft of a standard for Body Area Network (BAN) technologies. The draft was approved on July 22, 2011 by Letter Ballot to start the Sponsor Ballot process.[6] Task Group 6 was formed in November 2007 to focus on low-power and low-frequency short-range wireless standard [7][8] to be optimized for devices and operation on, in, or around the human body (but not limited to humans) to serve a variety of applications including medical, consumer electronics, and personal entertainment.
As of December 2011, The IEEE 802.15.7 Visible Light Communication Task Group has completed draft 5c of a PHY and MAC standard for Visible Light Communications (VLC). The inaugural meeting for Task Group 7 was held during January 2009, where it was chartered to write standards for free-space optical communication using visible light.[9]
The IEEE P802.15 Wireless Next Generation Standing Committee (SCwng) is chartered to facilitate and stimulate presentations and discussions on new Wireless related Technologies that may be subject for new 802.15 standardization projects or to address the whole 802.15 work group with issues or concerns with current techniques or technologies.[10]
|