7-demicube

Demihepteract
(7-demicube)

Petrie polygon projection
Type Uniform 7-polytope
Family demihypercube
Coxeter symbol 141
Schläfli symbol {31,4,1}
h{4,35}
s{26}
Coxeter-Dynkin diagram

6-faces 78 14 {31,3,1}
64 {35}
5-faces 532 84 {31,2,1}
448 {34}
4-faces 1624 280 {31,1,1}
1344 {33}
Cells 2800 560 {31,0,1}
2240 {3,3}
Faces 2240 {3}
Edges 672
Vertices 64
Vertex figure Rectified 6-simplex
Symmetry group D7, [36,1,1] = [1+,4,35]
[26]+
Dual ?
Properties convex

In geometry, a demihepteract or 7-demicube is a uniform 7-polytope, constructed from the 7-hypercube (hepteract) with alternated vertices deleted. It is part of a dimensionally infinite family of uniform polytopes called demihypercubes.

Coxeter named this polytope as 141 from its Coxeter-Dynkin diagram, with a ring on one of the 1-length Coxeter-Dynkin diagram branches.

Contents

Cartesian coordinates

Cartesian coordinates for the vertices of a demihepteract centered at the origin are alternate halves of the hepteract:

(±1,±1,±1,±1,±1,±1,±1)

with an odd number of plus signs.

Images

orthographic projections
Coxeter plane B7 D7 D6
Graph
Dihedral symmetry [14/2] [12] [10]
Coxeter plane D5 D4 D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Related polytopes

There are 95 uniform polytopes with D6 symmetry, 63 are shared by the B6 symmetry, and 32 are unique:


t0(141)

t0,1(141)

t0,2(141)

t0,3(141)

t0,4(141)

t0,5(141)

t0,1,2(141)

t0,1,3(141)

t0,1,4(141)

t0,1,5(141)

t0,2,3(141)

t0,2,4(141)

t0,2,5(141)

t0,3,4(141)

t0,3,5(141)

t0,4,5(141)

t0,1,2,3(141)

t0,1,2,4(141)

t0,1,2,5(141)

t0,1,3,4(141)

t0,1,3,5(141)

t0,1,4,5(141)

t0,2,3,4(141)

t0,2,3,5(141)

t0,2,4,5(141)

t0,3,4,5(141)

t0,1,2,3,4(141)

t0,1,2,3,5(141)

t0,1,2,4,5(141)

t0,1,3,4,5(141)

t0,2,3,4,5(141)

t0,1,2,3,4,5(141)

References

External links