6-j symbol

Wigner's 6-j symbols were introduced by Eugene Paul Wigner in 1940, and published in 1965. They are related to Racah's W-coefficients by


  \begin{Bmatrix}
    j_1 & j_2 & j_3\\
    j_4 & j_5 & j_6
  \end{Bmatrix}
   = (-1)^{j_1%2Bj_2%2Bj_4%2Bj_5}W(j_1j_2j_5j_4;j_3j_6).

They have higher symmetry than Racah's W-coefficients.

Contents

Symmetry relations

The 6-j symbol is invariant under the permutation of any two columns:


 \begin{Bmatrix}
    j_1 & j_2 & j_3\\
    j_4 & j_5 & j_6
 \end{Bmatrix}
 =
 \begin{Bmatrix}
    j_2 & j_1 & j_3\\
    j_5 & j_4 & j_6
 \end{Bmatrix}
=
 \begin{Bmatrix}
    j_1 & j_3 & j_2\\
    j_4 & j_6 & j_5
 \end{Bmatrix}
=
 \begin{Bmatrix}
    j_3 & j_2 & j_1\\
    j_6 & j_5 & j_4
 \end{Bmatrix}.

The 6-j symbol is also invariant if upper and lower arguments are interchanged in any two columns:


 \begin{Bmatrix}
    j_1 & j_2 & j_3\\
    j_4 & j_5 & j_6
 \end{Bmatrix}
 =
 \begin{Bmatrix}
    j_4 & j_5 & j_3\\
    j_1 & j_2 & j_6
 \end{Bmatrix}
 =
 \begin{Bmatrix}
    j_1 & j_5 & j_6\\
    j_4 & j_2 & j_3
 \end{Bmatrix}
 =
 \begin{Bmatrix}
    j_4 & j_2 & j_6\\
    j_1 & j_5 & j_3
 \end{Bmatrix}.

The 6-j symbol


 \begin{Bmatrix}
    j_1 & j_2 & j_3\\
    j_4 & j_5 & j_6
 \end{Bmatrix}

is zero unless j_1, j_2, and j_3 satisfy triangle conditions, i.e.,


  j_1 = |j_2-j_3|, \ldots, j_2%2Bj_3.

In combination with the symmetry relation for interchanging upper and lower arguments this shows that triangle conditions must also be satisfied for (j_1,j_5,j_6), (j_4,j_2,j_6), and (j_4,j_5,j_3).

Special case

When j_6=0 the expression for the 6-j symbol is:


 \begin{Bmatrix}
    j_1 & j_2 & j_3\\
    j_4 & j_5 & 0
 \end{Bmatrix}
 = \frac{\delta_{j_2,j_4}\delta_{j_1,j_5}}{\sqrt{(2j_1%2B1)(2j_2%2B1)}} (-1)^{j_1%2Bj_2%2Bj_3}\Delta(j_1,j_2,j_3).

The function \Delta(j_1,j_2,j_3) is equal to 1 when (j_1,j_2,j_3) satisfy the triangle conditions, and zero otherwise. The symmetry relations can be used to find the expression when another j is equal to zero.

Orthogonality relation

The 6-j symbols satisfy this orthogonality relation:


  \sum_{j_3} (2j_3%2B1)
 \begin{Bmatrix}
    j_1 & j_2 & j_3\\
    j_4 & j_5 & j_6
 \end{Bmatrix}
 \begin{Bmatrix}
    j_1 & j_2 & j_3\\
    j_4 & j_5 & j_6'
 \end{Bmatrix}
  = \frac{\delta_{j_6^{}j_6'}}{2j_6%2B1} \Delta(j_1,j_5,j_6) \Delta(j_4,j_2,j_6).

See also

References

External links