Orthogonal projections in E6 Coxeter plane | ||
---|---|---|
421 |
142 |
241 |
Rectified 421 |
Rectified 142 |
Rectified 241 |
Birectified 421 |
Trirectified 421 |
In 8-dimensional geometry, the 421 is a semiregular uniform 8-polytope, constructed within the symmetry of the E8 group. It was discovered by Thorold Gosset, published in his 1900 paper. He called it an 8-ic semi-regular figure.[1]
Coxeter named it 421 by its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 4-node sequences, .
The rectified 421 is constructed by points at the mid-edges of the 421. The birectified 421 is constructed by points at the triangle face centers of the 421. The trirectified 421 is constructed by points at the tetrahedral centers of the 421, and is the same as the rectified 142.
These polytopes are part of a family of 255 = 28 − 1 convex uniform 8-polytopes, made of uniform 7-polytope facets and vertex figures, defined by all permutations of one or more rings in this Coxeter-Dynkin diagram: .
Contents |
421 | |
---|---|
Type | Uniform 8-polytope |
Family | k21 polytope |
Schläfli symbol | {3,3,3,3,32,1} |
Coxeter symbol | 421 |
Coxeter-Dynkin diagram | |
7-faces | 19440 total: 2160 411 17280 {36} |
6-faces | 207360: 138240 {35} 68120 {35} |
5-faces | 483840 {34} |
4-faces | 483840 {33} |
Cells | 241920 {3,3} |
Faces | 60480 {3} |
Edges | 6720 |
Vertices | 240 |
Vertex figure | 321 polytope |
Petrie polygon | 30-gon |
Coxeter group | E8, [34,2,1] |
Properties | convex |
The 421 is composed of 17,280 7-simplex and 2,160 7-orthoplex facets. Its vertex figure is the 321 polytope.
For visualization this 8-dimensional polytope is often displayed in a special skewed orthographic projection direction that fits its 240 vertices within a 30-gonal regular polygon (called a Petrie polygon). Its 6720 edges are drawn between the 240 vertices. Specific higher elements (faces, cells, etc) can also be extracted and drawn on this projection.
As its 240 vertices represent the root vectors of the simple Lie group E8, the polytope is sometimes referred to as the E8 polytope.
Using a complex number coordinate system, it can also be constructed as a 4-dimensional regular complex polytope, named as: 3{3}3{3}3{3}3. Coxeter called it the Witting polytope, after Alexander Witting.[4]
It is created by a Wythoff construction upon a set of 8 hyperplane mirrors in 8-dimensional space.
The 240 vertices of the 421 polytope can be constructed in two sets: 112 (22×8C2) with coordinates obtained from by taking an arbitrary combination of signs and an arbitrary permutation of coordinates, and 128 roots (27) with coordinates obtained from by taking an even number of minus signs (or, equivalently, requiring that the sum of all the eight coordinates be even).
This polytope is the vertex figure for a uniform tessellation of 8-dimensional space, represented by symbol 521 and Coxeter-Dynkin diagram:
The facet information can be extracted from its Coxeter-Dynkin diagram.
Removing the node on the short branch leaves the 7-simplex:
Removing the node on the end of the 2-length branch leaves the 7-orthoplex in its alternated form (411):
Every simplex facet touches an 7-orthoplex facet, while alternate facets of the orthoplex touch either a simplex or another orthoplex.
The vertex figure is determined by removing the red node and node_1 the neighbor node. This makes the 321 polytope.
The 421 graph created as string art. |
E8 Coxeter plane projection |
The 421 polytope can be projected into 3-space as a physical vertex-edge model. Pictured here as 2 concentric 600-cells (at the golden ratio) using Zome tools.[5] (Not all of the 3360 edges of length √2(√5-1) are represented.) |
Mathematical representation of the physical Zome model isomorphic (?) to E8. This is constructed from VisibLie_E8 pictured with all 3360 edges of length √2(√5-1) from two concentric 600-cells (at the golden ratio) with orthogonal projections to perspective 3-space |
The actual split real even E8 421 polytope projected into perspective 3-space pictured with all 6720 edges of length √2[6] |
These graphs represent orthographic projections in the E8,E7,E6, and B8,D8,D7,D6,D5,D4,D3,A7,A5 Coxeter planes. The vertex colors are by overlapping multiplicity in the projection: colored by increasing order of multiplicities as red, orange, yellow, green.
E8 / H4 [30] |
[20] | [24] |
---|---|---|
(Colors: 1) |
(Colors: 1) |
(Colors: 1) |
E7 [18] |
E6 / F4 [12] |
[6] |
(Colors: 1,3,6) |
(Colors: 1,8,24) |
(Colors: 1,2,3) |
D3 / B2 / A3 [4] |
D4 / B3 / A2 / G2 [6] |
D5 / B4 [8] |
---|---|---|
(Colors: 1,12,32,60) |
(Colors: 1,27,72) |
(Colors: 1,8,24) |
D6 / B5 / A4 [10] |
D7 / B6 [12] |
D8 / B7 / A6 [14] |
(Colors: 1,5,10,20) |
(Colors: 1,3,9,12) |
(Colors: 1,2,3) |
B8 [16/2] |
A5 [6] |
A7 [8] |
(Colors: 1) |
(Colors: 3,8,24,30) |
(Colors: 1,2,4,8) |
The 421 polytope is last in a family called the k21 polytopes. The first polytope in this family is the semiregular triangular prism which is constructed from three squares (2-orthoplexes) and two triangles (2-simplexes).
The 421 is related to the 600-cell by a geometric folding of the Coxeter-Dynkin diagrams. This can be seen in the E8/H4 Coxeter plane projections. The 120 vertices of the 600-cell are projected in the same four rings as seen in the 421. The other 4 rings of the 421 graph also match a smaller copy of the four rings of the 600-cell.
E8/H4 Coxeter planes | |
---|---|
E8 | H4 |
421 |
600-cell |
[20] symmetry planes | |
421 |
600-cell |
Rectified 421 | |
---|---|
Type | Uniform 8-polytope |
Schläfli symbol | t1{3,3,3,3,32,1} |
Coxeter symbol | t1(421) |
Coxeter-Dynkin diagram | |
7-faces | 19680 total: |
6-faces | 375840 |
5-faces | 1935360 |
4-faces | 3386880 |
Cells | 2661120 |
Faces | 1028160 |
Edges | 181440 |
Vertices | 6720 |
Vertex figure | 221 prism |
Coxeter group | E8, [34,2,1] |
Properties | convex |
The rectified 421 can be seen as a rectification of the 421 polytope, creating new vertices on the center of edges of the 421.
It is created by a Wythoff construction upon a set of 8 hyperplane mirrors in 8-dimensional space. It is named for being a rectification of the 421. Vertices are positioned at the midpoint of all the edges of 421, and new edges connecting them.
The facet information can be extracted from its Coxeter-Dynkin diagram.
Removing the node on the short branch leaves the rectified 7-simplex:
Removing the node on the end of the 2-length branch leaves the rectified 7-orthoplex in its alternated form:
Removing the node on the end of the 4-length branch leaves the 321:
The vertex figure is determined by removing the red node and node the neighbor nodea. This makes a 221 prism.
These graphs represent orthographic projections in the E8,E7,E6, and B8,D8,D7,D6,D5,D4,D3,A7,A5 Coxeter planes. The vertex colors are by overlapping multiplicity in the projection: colored by increasing order of multiplicities as red, orange, yellow, green.
E8 / H4 [30] |
[20] | [24] |
---|---|---|
E7 [18] |
E6 / F4 [12] |
[6] |
D3 / B2 / A3 [4] |
D4 / B3 / A2 / G2 [6] |
D5 / B4 [8] |
---|---|---|
D6 / B5 / A4 [10] |
D7 / B6 [12] |
D8 / B7 / A6 [14] |
B8 [16/2] |
A5 [6] |
A7 [8] |
Birectified 421 polytope | |
---|---|
Type | Uniform 8-polytope |
Schläfli symbol | t2{3,3,3,3,32,1} |
Coxeter symbol | t2(421) |
Coxeter-Dynkin diagram | |
7-faces | 19680 total: |
6-faces | 382560 |
5-faces | 2600640 |
4-faces | 7741440 |
Cells | 9918720 |
Faces | 5806080 |
Edges | 1451520 |
Vertices | 60480 |
Vertex figure | 5-demicube-triangular duoprism |
Coxeter group | E8, [34,2,1] |
Properties | convex |
The birectified 421can be seen as a second rectification of the uniform 421 polytope. Vertices of this polytope are positioned at the centers of all the 60480 triangular faces of the 421.
It is created by a Wythoff construction upon a set of 8 hyperplane mirrors in 8-dimensional space. It is named for being a birectification of the 421. Vertices are positioned at the center of all the triangle faces of 421.
The facet information can be extracted from its Coxeter-Dynkin diagram.
Removing the node on the short branch leaves the birectified 7-simplex. There are 17280 of these facets.
Removing the node on the end of the 2-length branch leaves the birectified 7-orthoplex in its alternated form. There are 2160 of these facets.
Removing the node on the end of the 4-length branch leaves the rectified 321. There are 240 of these facets.
The vertex figure is determined by removing the red node and node the neighbor nodea. This makes a 5-demicube-triangular duoprism.
These graphs represent orthographic projections in the E8,E7,E6, and B8,D8,D7,D6,D5,D4,D3,A7,A5 Coxeter planes. Edges are not drawn. The vertex colors are by overlapping multiplicity in the projection: colored by increasing order of multiplicities as red, orange, yellow, green, etc.
E8 / H4 [30] |
[20] | [24] |
---|---|---|
E7 [18] |
E6 / F4 [12] |
[6] |
D3 / B2 / A3 [4] |
D4 / B3 / A2 / G2 [6] |
D5 / B4 [8] |
---|---|---|
D6 / B5 / A4 [10] |
D7 / B6 [12] |
D8 / B7 / A6 [14] |
B8 [16/2] |
A5 [6] |
A7 [8] |
Trirectified 421 polytope | |
---|---|
Type | Uniform 8-polytope |
Schläfli symbol | t3{3,3,3,3,32,1} |
Coxeter symbol | t3(421) |
Coxeter-Dynkin diagram | |
7-faces | 19680 |
6-faces | 382560 |
5-faces | 2661120 |
4-faces | 9313920 |
Cells | 16934400 |
Faces | 14515200 |
Edges | 4838400 |
Vertices | 241920 |
Vertex figure | tetrahedron-rectified 5-cell duoprism |
Coxeter group | E8, [34,2,1] |
Properties | convex |
It is created by a Wythoff construction upon a set of 8 hyperplane mirrors in 8-dimensional space. It is named for being a birectification of the 421. Vertices are positioned at the center of all the triangle faces of 421.
The facet information can be extracted from its Coxeter-Dynkin diagram.
Removing the node on the short branch leaves the trirectified 7-simplex:
Removing the node on the end of the 2-length branch leaves the trirectified 7-orthoplex in its alternated form:
Removing the node on the end of the 4-length branch leaves the birectified 321:
The vertex figure is determined by removing the ringed node and ring the neighbor nodes. This makes a tetrahedron-rectified 5-cell duoprism.
These graphs represent orthographic projections in the E7,E6, and B8,D8,D7,D6,D5,D4,D3,A7,A5 Coxeter planes. The vertex colors are by overlapping multiplicity in the projection: colored by increasing order of multiplicities as red, orange, yellow, green.
(E8 and B8 were too large to display)
E7 [18] |
E6 / F4 [12] |
D4 - E6 [6] |
---|---|---|
D3 / B2 / A3 [4] |
D4 / B3 / A2 / G2 [6] |
D5 / B4 [8] |
---|---|---|
D6 / B5 / A4 [10] |
D7 / B6 [12] |
D8 / B7 / A6 [14] |
A5 [6] |
A7 [8] |
|