The word siphon (also spelled syphon) is sometimes used to refer to a wide variety of devices that allow the flow of liquids through tubes. But in the English language today, a siphon is commonly understood to be a tube, in an inverted U shape, which allows a liquid to flow uphill without a pump, over an obstacle and then discharge at a level lower than the surface of the original reservoir. Practical siphons operate because gravity causes the hydrostatic pressure at the entrance to the tube to exceed that at the top of the tube by a sufficient amount to force fluid from the reservoir into the tube and uphill over the obstacle. Gravity causes the hydrostatic pressure at the downstream end of the tube to be significantly higher than the surrounding pressure so fluid flows out of the tube into the atmosphere or into a second reservoir lower than the first.[1]
Egyptian reliefs from 1500 BC depict siphons used to extract liquids from large storage jars.[2]
Hero of Alexandria wrote extensively about siphons in the treatise Pneumatica.[3]
In the 9th century, the Banu Musa brothers invented a double-concentric siphon, which they described in their Book of Ingenious Devices.[4]
A siphon operates to move liquid from an upper reservoir to a lower reservoir because gravity causes the hydrostatic pressure of the liquid in the discharge end of the tube to be greater than the surrounding pressure in the lower reservoir. If a siphon operates to move liquid out of a reservoir and into the atmosphere it is because the hydrostatic pressure of the liquid in the discharge end of the tube is greater than atmospheric pressure. Liquid is drawn into a siphon and rises above the surface of the upper reservoir because gravity causes the hydrostatic pressure of liquid near the crest of the siphon to be less than atmospheric pressure.[1]
An occasional misunderstanding of siphons is that they rely on the tensile strength of the liquid to pull the liquid up and over the rise.[5] While water has been found to have a great deal of tensile strength in some experiments (such as with the z-tube[6]), and siphons in vacuum rely on such cohesion, common siphons can easily be demonstrated to need no liquid tensile strength at all to function.[5][7] Furthermore, since common siphons operate at positive pressures throughout the siphon, there is no contribution from liquid tensile strength, because the molecules are actually repelling each other in order to resist the pressure, rather than pulling on each other. To demonstrate, the longer lower leg of a common siphon can be plugged at the bottom and filled almost to the crest with liquid, leaving the top and the shorter upper leg completely dry and containing only air at ambient pressure. When the plug is removed and the liquid in the longer lower leg is allowed to fall, it will cause a reduction of pressure at the top of the siphon, resulting in the liquid in the upper reservoir being pushed up into the reduced pressure area by atmospheric pressure acting on the upper reservoir. The liquid will then typically sweep the air bubble down and out of the tube and continue to operate as a normal siphon. As there is no contact between the liquid on either side of the siphon at the beginning of this experiment, there can be no cohesion between the liquid molecules to pull the liquid over the rise. This demonstration may fail if the air bubble is so long that as it travels down the lower leg of the siphon it displaces so much liquid that the column of liquid on the longer lower leg of the siphon is no longer heavier than the column of liquid being pushed up the shorter leg of the siphon. Another simple demonstration that liquid tensile strength isn't needed in the siphon is to simply introduce a bubble into the siphon during operation. The bubble can be large enough to entirely disconnect the liquids in the tube before and after it, defeating any liquid tensile strength, and yet if the bubble isn't too big, the siphon will continue to operate with little change.
The uphill flow of water in a siphon doesn’t violate the principle of continuity because the mass of water entering the tube and flowing upwards is equal to the mass of water flowing downwards and leaving the tube. A siphon doesn't violate the principle of conservation of energy because the loss of gravitational potential energy as liquid flows from the upper reservoir to the lower reservoir equals the work done in overcoming fluid friction as the liquid flows through the tube.[1] Once started, a siphon requires no additional energy to keep the liquid flowing up and out of the reservoir. The siphon will draw liquid out of the reservoir until the level falls below the intake, allowing air or other surrounding gas to break the siphon, or until the outlet of the siphon equals the level of the reservoir, whichever comes first.
The maximum height of the crest is limited by atmospheric pressure, the density of the liquid, and its vapour pressure. When the pressure within the liquid drops to below the liquid's vapor pressure, tiny vapor bubbles can begin to form at the high point and the siphon effect will end. This effect depends on how efficiently the liquid can nucleate bubbles; in the absence of impurities or rough surfaces to act as easy nucleation sites for bubbles, siphons can temporarily exceed their standard maximum height during the extended time it takes bubbles to nucleate. For water at standard atmospheric pressure, the maximum siphon height is approximately 10 m (33 feet); for mercury it is 76 cm (30 inches).
A simplified conceptual model of a siphon is that it is like a chain hanging over a pulley with one end of the chain piled on a higher surface than the other. Since the length of chain on the shorter side is lighter than the length of chain on the taller side, the chain will move up around the pulley and down towards the lower surface.[8]
There are two problems with the chain model of a siphon. The first is that under most practical circumstances, dissolved gases, vapor pressure, and (sometimes) lack of adhesion with tube walls, conspire to render the tensile strength within the liquid, ineffective for siphoning. Thus, unlike a chain which has significant tensile strength, liquids usually have little tensile strength under typical siphon conditions, and therefore the liquid on the rising side cannot be pulled up, in the way the chain is pulled up on the rising side.[5][7]
The second problem with the chain model of the siphon is that the weight of liquid on the up side of the siphon can be greater than the liquid on the down side, yet the siphon can still function. For example, if the tube from the upper reservoir to the top of the siphon has a much larger diameter than the section of tube from the lower reservoir to the top of the siphon, the shorter upper section of the siphon may have a much larger weight of liquid in it, yet the siphon can function normally.
A plain tube can be used as a siphon. An external pump has to be applied to start the liquid flowing and prime the siphon. This can be a human mouth. This is sometimes done with any leak-free hose to siphon gasoline from a motor vehicle's gasoline tank to an external tank. (Siphoning gasoline by mouth often results in the accidental swallowing of gasoline, which is quite poisonous, or aspirating it into the lungs, which can cause death or lung damage.[9]) If the tube is flooded with liquid before part of the tube is raised over the intermediate high point and care is taken to keep the tube flooded while it is being raised, no pump is required. Devices sold as siphons come with a siphon pump to start the siphon process. When applying a siphon to any application it is important that the piping be as closely sized to the requirement as possible. Using piping of too great a diameter and then throttling the flow using valves or constrictive piping appears to increase the effect of previously cited concerns over gases or vapor collecting in the crest which serve to break the vacuum. Once the vacuum is reduced the siphon effect is lost.
Reducing the size of pipe used closer to requirements appears to reduce this effect and creates a more functional siphon that does not require constant re-priming and restarting. In this respect, where the requirement is to match a flow into a container with a flow out of said container (to maintain a constant level in a pond fed by a stream, for example) it would be preferable to utilize two or three smaller separate parallel pipes that can be started as required rather than attempting to use a single large pipe and attempting to throttle it.
When certain liquids needs to be purified, siphoning can help prevent either the bottom (dregs) or the top (foam and floaties) from being transferred out of one container into a new container. Siphoning is thus useful in the fermentation of wine and beer for this reason, since it can keep unwanted impurities out of the new container.
Self-constructed siphons, made of pipes or tubes, can be used to evacuate water from cellars after floodings. Between the flooded cellar and a deeper place outside a connection is built, using a tube or some pipes. They are filled with water through an intake valve (at the highest end of the construction). When the ends are opened, the water flows through the pipe into the sewer or the river.
Siphoning is common in irrigated fields to transfer a controlled amount of water from a ditch, over the ditch wall, into furrows.
Large siphons may be used in municipal waterworks and industry. Their size requires control via valves at the intake, outlet and crest of the siphon. The siphon may be primed by closing the intake and outlets and filling the siphon at the crest. If intakes and outlets are submerged, a vacuum pump may be applied at the crest to prime the siphon. Alternatively the siphon may be primed by a pump at either the intake or outlet.
Gas in the liquid is a concern in large siphons.[10] The gas tends to accumulate at the crest and if enough accumulates to break the flow of liquid, the siphon stops working. The siphon itself will exacerbate the problem because as the liquid is raised through the siphon, the pressure drops, causing dissolved gases within the liquid to come out of solution. Higher temperature accelerates the release of gas from liquids so maintaining a constant, low temperature helps. The longer the liquid is in the siphon, the more gas is released, so a shorter siphon overall helps. Local high points will trap gas so the intake and outlet legs should have continuous slopes without intermediate high points. The flow of the liquid moves bubbles thus the intake leg can have a shallow slope as the flow will push the gas bubbles to the crest. Conversely, the outlet leg needs to have a steep slope to allow the bubbles to move against the liquid flow; though other designs call for a shallow slope in the outlet leg as well to allow the bubbles to be carried out of the siphon. At the crest the gas can be trapped in a chamber above the crest. The chamber needs to be occasionally primed again with liquid to remove the gas.
From Ontario's building code:[18]
The term self-siphon is used in a number of ways. Liquids that are composed of long polymers can "self-siphon"[19][20] and these liquids do not depend on atmospheric pressure. Self-siphoning polymer liquids work the same as the siphon-chain model where the lower part of the chain pulls the rest of the chain up and over the crest. This phenomenon is also called a tubeless siphon.[21]
"Self-siphon" is also often used in sales literature by siphon manufacturers to describe portable siphons that contain a pump. With the pump, no external suction (e.g. from a person's mouth/lungs) is required to start the siphon and thus the product is described as a "self-siphon".
If the upper reservoir is such that the liquid there can rise above the height of the siphon crest, the rising liquid in the reservoir can "self-prime" the siphon and the whole apparatus be described as a "self-siphon".[22] Once primed, such a siphon will continue to operate until the level of the upper reservoir falls below the intake of the siphon. Such self-priming siphons are useful in some rain gauges and dams.
Capillary action can be used in self-priming siphons. In these, water soaks upwards (into a cotton-filled hose) and below the crest to begin the siphon gradually, and as weight is added to the down stream, this kind of siphon will speed up, but it will never be as fast as the same diameter of open hose.
The term "siphon" is used for a number of structures in human and animal anatomy, either because flowing liquids are involved or because the structure is shaped like a siphon, but in which no actual siphon effect is occurring: see Siphon (biology).
Biologists debate whether the siphon mechanism plays a role in blood circulation.[23] It is theorized that veins form a continuous loop with arteries such that blood flowing down veins help siphon blood up the arteries, especially in giraffes and snakes.[24] Some have concluded that the siphon mechanism aids blood circulation in giraffes.[25] Many others dispute this[26][27] and experiments show no siphon effects in human circulation.[28] Some cite negative pressure in the brain as supporting the role of the siphon effect in the brain.[29]
Bernoulli's equation may be applied to a siphon to derive the flow rate and maximum height of the siphon.
Bernoulli's equation:
Apply Bernoulli's equation to the surface of the upper reservoir. The surface is technically falling as the upper reservoir is being drained. However, for this example we will assume the reservoir to be infinite and the velocity of the surface may be set to zero. Furthermore, the pressure at both the surface and the exit point C is atmospheric pressure. Thus:
Apply Bernoulli's equation to point A at the start of the siphon tube in the upper reservoir where P = PA, v = vA and y = −d
Apply Bernoulli's equation to point B at the intermediate high point of the siphon tube where P = PB, v = vB and y = hB
Apply Bernoulli's equation to point C where the siphon empties. Where v = vC and y = −hC. Furthermore, the pressure at the exit point is atmospheric pressure. Thus:
As the siphon is a single system, the constant in all four equations is the same. Setting equations 1 and 4 equal to each other gives:
Solving for vC:
The velocity of the siphon is thus driven solely by the height difference between the surface of the upper reservoir and the drain point. The height of the intermediate high point, hB, does not affect the velocity of the siphon. However, as the siphon is a single system, vB = vC and the intermediate high point does limit the maximum velocity. The drain point cannot be lowered indefinitely to increase the velocity. Equation 3 will limit the velocity to a positive pressure at the intermediate high point to prevent cavitation. The maximum velocity may be calculated by combining equations 1 and 3:
Setting PB = 0 and solving for vmax:
The depth, −d, of the initial entry point of the siphon in the upper reservoir, does not affect the velocity of the siphon. No limit to the depth of the siphon start point is implied by Equation 2 as pressure PA increases with depth d. Both these facts imply the operator of the siphon may bottom skim or top skim the upper reservoir without impacting the siphon's performance.
Note that this equation for the velocity is the same as that of any object falling height hC. Note also that this equation assumes PC is atmospheric pressure. If the end of the siphon is below the surface, the height to the end of the siphon cannot be used; rather the height difference between the reservoirs should be used.
Setting equations 1 and 3 equal to each other gives:
Maximum height of the intermediate high point occurs when it is so high that the pressure at the intermediate high point is zero; in typical scenarios this will cause the liquid to form bubbles and if the bubbles enlarge to fill the pipe then the siphon will 'break'. Setting PB = 0:
Solving for hB:
This means that the height of the intermediate high point is limited by velocity of the siphon. Faster siphons result in lower heights. Height is maximized when the siphon is very slow and vB = 0:
This is the maximum height that a siphon will work. It is simply when the weight of the column of liquid to the intermediate high point equates to atmospheric pressure. Substituting values will give approximately 10 metres for water and 0.76 metres for mercury.
Experiments have shown that siphons can operate in a vacuum, provided that the liquids are pure and degassed and surfaces are very clean.[30][31][32]
The Oxford English Dictionary (OED) entry on siphon, published in 1911, states that a siphon works by atmospheric pressure. Stephen Hughes of Queensland University of Technology criticised this in a 2010 article[8] which was widely reported in the media.[33][34][35][36] The OED editors stated, "there is continuing debate among scientists as to which view is correct. ... We would expect to reflect this debate in the fully updated entry for siphon, due to be published later this year."[37]