Primates[1] Fossil range: Late Paleocene–recent |
|
---|---|
Olive Baboon, Papio anubis | |
Scientific classification | |
Kingdom: | Animalia |
Phylum: | Chordata |
Class: | Mammalia |
Infraclass: | Eutheria |
Superorder: | Euarchontoglires |
Order: | Primates Linnaeus, 1758 |
Families | |
|
|
Range of the non-human primates (green) |
A primate (pronounced /ˈpraɪmeɪt/, us dict: prī′·māt) is a member of the biological order Primates (/praɪˈmeɪtiːz/ prī·mā′·tēz; Latin: "prime, first rank"[2]), the group that contains prosimians (including lemurs, lorises, galagos and tarsiers ) and simians (monkeys and apes).[3] With the exception of humans, who inhabit every continent on Earth,[a] most primates live in tropical or subtropical regions of the Americas, Africa and Asia.[4] Primates range in size from the Madame Berthe's Mouse Lemur, which weighs only 30 grams (1.1 oz) to the Mountain Gorilla weighing 200 kilograms (440 lb). According to fossil evidence, the primitive ancestors of primates may have existed in the late Cretaceous period around 65 million years ago, and the oldest known primate is the Late Paleocene Plesiadapis, c. 55–58 million years ago.[5] Molecular clock studies suggest that the primate branch may be even older, originating in the mid-Cretaceous period around 85 mya.[5]
The Primates order has traditionally been divided into two main groupings: prosimians and simians. Prosimians have characteristics most like those of the earliest primates, and included the lemurs of Madagascar, lorisiforms and tarsiers. Simians included the monkeys and apes. More recently, taxonomists have created the suborder Strepsirrhini, or curly-nosed primates, to include non-tarsier prosimians and the suborder Haplorrhini, or dry-nosed primates, to include tarsiers and the simians. Simians are divided into two groups: the platyrrhines ("flat nosed") or New World monkeys of South and Central America and the catarrhine (narrow nosed) monkeys of Africa and southeastern Asia. The New World monkeys include the capuchin, howler and squirrel monkeys, and the catarrhines include the Old World monkeys (such as baboons and macaques) and the apes. Humans are the only catarrhines that have spread successfully outside of Africa, South Asia, and East Asia, although fossil evidence shows many species once existed in Europe as well.
Considered generalist mammals, primates exhibit a wide range of characteristics. Some primates (including some great apes and baboons) do not live primarily in trees, but all species possess adaptations for climbing trees. Locomotion techniques used include leaping from tree to tree, walking on two or four limbs, knuckle-walking, and swinging between branches of trees (known as brachiation). Primates are characterized by their large brains, relative to other mammals, as well as an increased reliance on stereoscopic vision at the expense of smell, the dominant sensory system in most mammals. These features are most significant in monkeys and apes, and noticeably less so in lorises and lemurs. Three-color vision has developed in some primates. Most also have opposable thumbs and some have prehensile tails. Many species are sexually dimorphic, which means males and females have different physical traits, including body mass, canine tooth size, and coloration. Primates have slower rates of development than other similarly sized mammals, and reach maturity later but have longer lifespans. Some species live in solitude, others live in male–female pairs, and others live in groups of up to hundreds of members.
Contents |
|
|||||||||||||||||||||||||||||||||
The Primates order are a part of the clade Euarchontoglires which is nested within the Eutheria clade of the class Mammalia. Recent molecular genetic research on primates, colugos, and treeshrews has shown that the two species of colugos are more closely related to the primates than the treeshrews,[6] even though the treeshrews were at one time considered primates.[7] These three orders make up the Euarchonta clade. This clade combines with the Glires clade (composed of the Rodentia and Lagomorpha) to form the Euarchontoglires clade. Variously, both Euarchonta and Euarchontoglires are ranked as superorders. Some scientists consider Dermoptera a suborder of Primates and call the "true" primates the suborder Euprimates.[8]
The primate lineage is thought to go back at least 65 mya,[9] even though the oldest known primate from the fossil record is Plesiadapis (c. 55–58 mya) from the Late Paleocene.[10][11] Other studies, including molecular clock studies, have estimated the origin of the primate branch to have been in the mid-Cretaceous period, around 85 mya.[12][13][14]
In modern cladistic reckonings, the Primates order is monophyletic. The suborder Strepsirrhini, the curly-nosed or "wet-nosed" primates, is generally thought to have split off from the primitive primate line about 63 mya (million years ago),[15] although earlier dates are also supported.[16] The seven strepsirhine families are the five related lemur families and the two remaining families that include the lorisids and the galagos.[1][17] Older classification schemes wrap the Lepilemuridae into the Lemuridae and the Galagidae into the Lorisidae, yielding a three-two family split instead of the five-two split as presented here.[1] During the Eocene, most of the northern continents were dominated by two groups, the adapiforms and the omomyids.[18][19] The former is considered a member of Strepsirrhini, but it does not have a toothcomb like modern lemurs; recent analysis has suggested Darwinius masillae fits into this grouping.[20] The latter was related closely to tarsiers, monkeys, and apes. It is unclear exactly how these two groups relate to extant primates. Omomyids perished about 30 mya,[19] while Adapids survived until about 10 mya.[21]
According to genetic studies, the lemurs of Madagascar diverged from the lorisiforms approximately 75 mya.[16] These studies, as well as chromosomal and molecular evidence, also show that lemurs are more closely related to each other than to other strepsirrhine primates.[16][22] However, Madagascar split from Africa at 160 mya and from India at 90 mya.[23] For lemurs to be more closely related to each other than other strepsirrhine primates, it is thought that a very small ancestral population came to Madagascar via a single rafting event between 50 and 80 million years ago.[16][22][23] Other colonization options have been examined, such as multiple colonizations from Africa and India, but none are supported by the genetic and molecular evidence.[18]
Until recently the Aye-aye has been difficult to place within Strepsirrhini.[1] Theories had been proposed that its family, Daubentoniidae, was either a lemuriform primate (meaning its ancestors split from lemur line more recently than the lemurs and lorises split) or a sister group to all the other strepsirrhines. In 2008, the Aye-aye family (Daubentoniidae) was confirmed to be mostly closely related to the Malagasy lemurs, likely having descended from the same ancestral population that colonized the island.[16]
The suborder Haplorrhini, the simple-nosed or "dry-nosed" primates, is composed of two sister clades.[1] The prosimian tarsiers in family Tarsiidae (monotypic in its own infraorder Tarsiiformes), represent the most primitive division at about 58 mya.[24][25] The Simiiformes infraorder emerged about 40 mya,[19] and contains the two clades: the parvorder Platyrrhini that developed in South America and contains New World monkeys, and the parvorder Catarrhini that developed in Africa and contains the Old World monkeys, humans and the other apes.[1] A third clade, which included the eosimiids, developed in Asia but went extinct millions of years ago.[26]
Like the lemurs, the New World monkeys have unclear origins. Molecular sequence studies based on concatenated sequences have yielded wide variations in the estimated date of the divergence between platyrrhines and catarrhines, ranging from 33 to 70 mya, while studies based on mitochondrial sequences suggest a more consistent date of 35 to 43 mya.[27][5] It has been postulated that there is a single origin for the anthropoids in Africa some migrated and subsequently speciation occurred.[18] It is possible that the anthropoid primates traversed the Atlantic ocean during the Eocene, facilitated by Atlantic Ocean ridges and a lowered sea level, then island-hopped to South America.[18] Once again, a rafting event may explain this transoceanic colonization. Due to continental drift, the young Atlantic Ocean was not nearly as wide as it is today,[18] and research suggests that a small 1 kg (2.2 lb) primate could have survived 13 days on a raft of vegetation.[28] Given estimated current and wind speeds, this would have provided enough time to make the voyage between the continents.
Apes and monkeys spread from Africa into Europe and Asia starting in the Miocene.[29] Soon after, the lorises and tarsiers made the same journey. The first hominid fossils were discovered in Northern Africa and date back 5–8 mya.[19] Old World monkeys disappeared from Europe about 1.8 mya.[30] Some molecular and fossil studies generally show that modern humans originated in Africa 100–200 tya (thousand years ago).[31]
Although primates are well studied in comparison to other animal groups, several new species have been recently discovered; genetic tests on some populations have revealed previously unrecognised species. Primate Taxonomy listed about 350 species of primates in 2001,[32] the author, Colin Groves, increased that number to 376 for his contribution to the third edition of Mammal Species of the World (MSW3).[1] However, MSW3 falls short of current understanding as its collection was completed in 2003; a number of publications have since pushed the number to 424 species, or 658 including subspecies.[33] Notable new species not listed in MSW3 include the Bemaraha Woolly Lemur (Avahi cleesei, named after British actor and lemur enthusiast John Cleese) and the GoldenPalace.com Monkey (whose name was put up for auction).
The following is the listing of the various families of primates:[1][17][33]
The order Primates was established by Carl Linnaeus in 1758, in the tenth edition of his book Systema Naturae,[34] for the genera Homo (humans), Simia (other apes and monkeys), Lemur (prosimians) and Vespertilio (bats). In the first edition of the same book (1735), he had used the name Anthropomorpha for Homo, Simia and Bradypus (sloths).[35] In 1839, Henri Marie Ducrotay de Blainville, following Linnaeus and imitating his nomenclature, established the orders Secundates (including the suborders Chiroptera, Insectivora and Carnivora), Tertiates (or Glires) and Quaternates (including Gravigrada, Pachydermata and Ruminantia),[36] but these new taxa were not accepted.
Before Anderson and Jones introduced the classification of Strepsirhini and Haplorhini in 1984,[37] (followed by McKenna and Bell's 1997 work Classification of Mammals: Above the species level),[38] the Primates were divided into two superfamilies: Prosimii and Anthropoidea.[39] The Prosimii included all of the prosimians: all of Strepsirrhini plus the tarsiers. The Anthropoidea contained all of the simians.
Primate hybrids usually arise in captivity,[40] but there have also been examples in the wild.[41][42] Hybridization occurs where two species' range overlap to form hybrid zones; hybrids may be created by humans when animals are placed in zoos or due to environmental pressures such as predation.[41] Intergeneric hybridizations, hybrids of different genera, have also been found in the wild. Although they belong to genera that have been distinct for several million years, interbreeding still occurs between the Gelada and the Hamadryas Baboon.[43]
Primates have diversified in arboreal habitats (trees and bushes) and retain many characteristics that are adaptations to this environment.[44] They are distinguished by:
Not all primates exhibit these anatomical traits, nor is every trait unique to primates. For example, other mammals have collar bones, three kinds of teeth and a pendulous penis, while spider monkeys have greatly reduced thumbs, ruffed lemurs have six mammary glands and strepsirrhines generally have longer snouts and a strong sense of smell. Primates are generalist mammals.[46]
In regard to behavior, primates are frequently highly social, with flexible dominance hierarchies.[47] New World species form monogamous pair bonds, and show substantial paternal care of their young, unlike most Old World monkeys.[48]
Primates have forward-facing eyes on the front of the skull; binocular vision allows accurate distance perception, useful for the brachiating ancestors of all great apes.[44] There is a bony ridge above the eye sockets; this ridge reinforces weaker bones in the face which are put under strain during chewing. Strepsirrhines have a postorbital bar, a bone which runs around the eye socket, to protect their eyes; in contrast, the higher primates, haplorrhines, have evolved fully enclosed sockets.[49]
The primate skull has a large domed cranium which is particularly prominent in anthropoids. The cranium protects the large brain, a distinguishing characteristic of this group.[44] The endocranial volume (the volume within the skull) is three times greater in humans than in the greatest non-human primate, reflecting a larger brain size.[50] The mean endocranial volume is 1201 cubic centimeters in humans, 469 cm3 in gorillas, 400 cm3 in chimpanzees and 397 cm3 in orangutans.[50] The primary evolutionary trend of primates has been the elaboration of the brain, in particular the neocortex (a part of the cerebral cortex), which is involved with sensory perception, generation of motor commands, spatial reasoning, conscious thought and, in humans, language.[4] While other mammals rely heavily on their sense of smell, the arboreal life of primates has led to a tactile, visually dominant sensory system,[4] a reduction in the olfactory region of the brain and increasingly complex social behavior.[51]
Primates generally have five digits on each limb (pentadactyly), with keratin nails on the end of each finger. The bottom sides of the hands and feet have sensitive pads on the fingertips. Most have opposable thumbs, a characteristic primate feature; however, opposing thumbs are not limited to this order (opossums, for example, also have them).[44] Thumbs allow some species to use tools. In primates, the combination of opposing thumbs, short fingernails (rather than claws) and long, inward-closing fingers is a relic of the ancestral practice of gripping branches, and has, in part, allowed some species to develop brachiation (swinging by the arms from tree limb to tree limb) as a significant means of transportation. Prosimians have clawlike nails on the second toe of each foot, called toilet-claws, which they use for grooming.[44]
The primate collar bone is retained as prominent element of the pectoral girdle; this allows the shoulder joint broad mobility.[47] Apes have more mobile shoulder joints and arms due to the dorsal position of the scapula, broad ribcages that are flatter front-to-back, and a shorter, less mobile spine compared to Old World monkeys (with lower vertebrae greatly reduced, resulting in tail loss in some species). Old World monkeys are unlike apes in that most have tails. The only primate family with prehensile tails are the New World Atelids, including the howler, spider and woolly monkeys.
Primates show an evolutionary trend towards a reduced snout.[47] Technically, Old World monkeys are distinguished from New World monkeys by the structure of the nose, and from apes by the arrangement of their teeth.[51] In New World monkeys the nostrils face sideways; in Old World monkeys, they face downwards.[51] There is a considerably varied dental pattern in primates and although some have lost most of their incisors, all retain at least one lower incisor.[51] In most strepsirhines, the lower incisors and canines form a toothcomb, which is used in grooming and sometimes foraging,[46][51] and the first lower premolar is shaped like a canine.[46] Old World monkeys have eight premolars, compared with twelve in New World monkeys.[51] The Old World species are divided into apes and monkeys depending on the number of cusps on their molars; apes have five, Old World monkeys have four,[51] although humans may have 4 or 5.[52] The main hominid molar cusp (hypocone) evolved in early primate history, while the cusp of the corresponding primitive lower molar (paraconid) was lost. Prosimians are distinguished by their immobilized upper lips, the moist tip of their nose and forward-facing lower front teeth.
The evolution of color vision in primates is unique among most eutherian mammals. While the remote vertebrate ancestors of the primates possessed three color vision (trichromaticism), the nocturnal, warm-blooded, mammalian ancestors lost one of three cones in the retina during the Mesozoic period. Fish, reptiles and birds are therefore trichromatic or tetrachromatic while all mammals, with the exception of some primates and marsupials,[53] are dichromats or monochromats (totally color blind).[46] Nocturnal primates, such as the night monkeys and bush babies, are often monochromatic. Catarrhines are routinely trichromatic due to a gene duplication of the red-green opsin gene at the base of their lineage, 30 to 40 million years ago.[46][54] Platyrrhines, on the other hand, are trichromatic in a few cases only.[55] Specifically, individual females must be heterozygous for two alleles of the opsin gene (red and green) located on the same locus of the X chromosome.[46] Males, therefore, can only be dichromatic, while females can be either dichromatic or trichromatic. Color vision in strepsirrhines is not as well understood; however, research indicates a range of color vision similar to that found in platyrrhines.[46]
Like catarrhines, Howler monkeys (a family of platyrrhines) show routine trichromatism that has been traced to an evolutionarily recent gene duplication.[56] Howler monkeys are one of the most specialized leaf-eaters of the New World monkeys; fruits are not a major part of their diet,[57] and the type of leaves they prefer to consume (young, nutritive, and digestible) are detectable only by a red-green signal. Field work exploring the dietary preferences of howler monkeys suggests that routine trichromaticism was environmentally selected for.[55]
Sexual dimorphism, the variation between individuals of different sex in the same species, is often exhibited in simians, though to a greater degree in Old World species (apes and some monkeys) than New World species. Recent studies involve comparing DNA to examine both the variation in the expression of the dimorphism among primates and the fundamental causes of sexual dimorphism. Primates usually have dimorphism in body mass[58][59] and canine tooth size[60][61] along with pelage and skin color.[62] The dimorphism can be attributed to and affected by different factors, including mating system,[63] size,[63] habitat and diet.[64]
Comparative analyses have generated a more complete understanding of the relationship between sexual selection, natural selection, and mating systems in primates. Studies have shown that dimorphism is the product of changes in both male and female traits.[65] Ontogenetic scaling, where relative extension of a common growth trajectory occurs, may give some insight into the relationship between sexual dimorphism and growth patterns.[66] Some evidence from the fossil record suggests that there was convergent evolution of dimorphism, and some extinct hominids probably had greater dimorphism than any living primate.[65]
Primate species move by brachiation, bipedalism, leaping, arboreal and terrestrial quadrupedalism, climbing, knuckle-walking or by a combination of these methods. Several prosimians are primarily vertical clinger and leapers. These include many bushbabies, all indriids (i.e., sifakas, avahis and indris), sportive lemurs, and all tarsiers.[67] Other prosimians are arboreal quadrupeds and climbers. Some are also terrestrial quadrupeds, while some are leapers. Most monkeys are both arboreal and terrestrial quadrupeds and climbers. Gibbons, muriquis and spider monkeys all use brachiation extensively.[30] Woolly monkeys also sometimes brachiate.[57] Orangutans use a similar form of locomotion called quadramanous climbing, in which they use their arms and legs to carry their heavy bodies through the trees.[30] Chimpanzees and gorillas knuckle walk,[30] and can move bipedally for short distances. Although numerous species, such as the Australopithecines and early hominids, have exhibited fully bipedal locomotion, humans are the only extant species with this trait.
Richard Wrangham stated that social systems of non-human primates are best classified by the amount of movement by females occurring between groups.[68] He proposed four categories:
Other systems are known to occur as well. For example, with howler monkeys both the males and females typically transfer from their natal group on reaching sexual maturity, resulting in groups in which neither the males nor females are typically related.[57] Some prosimians, colobine monkeys and callitrichid monkeys use this system.[30]
Primatologist Jane Goodall, who studied in the Gombe Stream National Park, noted fission-fusion societies in chimpanzees.[72] There is fission where the main group splits up to forage during the day, then fusion when the group returns at night to sleep as a group. This social structure can also be observed in the Hamadryas Baboon,[73] spider monkeys[57] and the Bonobo.[73] The Gelada has a similar social structure in which many smaller groups come together to form temporary herds of up to 600 monkeys.[73]
These social systems are affected by three main ecological factors: distribution of resources, group size and predation.[48] Within a social group there is a balance between cooperation and competition. Cooperative behaviors include social grooming (removing skin parasites and cleaning wounds), food sharing, and collective defense against predators or of a territory. Aggressive behaviors often signal competition for availability of food, sleeping sites or mates. Aggression is also used in establishing dominance hierarchies.[48][74]
Several species of primates are known to associate in the wild. Some of these associations have been extensively studied. In the Tai Forest of Africa several species coordinate anti-predator behavior. These include the Diana Monkey, Campbell's Mona Monkey, Lesser Spot-nosed Monkey, Western Red Colobus, King Colobus and Sooty Mangabey, which coordinate anti-predator alarm calls.[75] Among the predators of these monkeys is the Common Chimpanzee.[76]
The Red-tailed Monkey associates with several species, including the Western Red Colobus, Blue Monkey, Wolf's Mona Monkey, Mantled Guereza, Black Crested Mangabey and Allen's Swamp Monkey.[73] Several of these species are predated on by the Common Chimpanzee.[77]
In South America, squirrel monkeys associate with capuchin monkeys.[78] This may have more to do with foraging benefits to the squirrel monkeys rather than anti-predation benefits.[78]
Primates have advanced cognitive abilities: some make tools and use them to acquire food and for social displays;[79][80] some have sophisticated hunting strategies requiring cooperation, influence and rank;[81] they are status conscious, manipulative and capable of deception;[82] they can recognise kin and conspecifics;[83][84] and they can learn to use symbols and understand aspects of human language including some relational syntax and concepts of number and numerical sequence.[85][86][87] Research in primate cognition explores problem solving, memory, social interaction, a theory of mind, and numerical, spatial, and abstract concepts.[88]
Lemurs, lorises, tarsiers, and New World monkeys rely on olfactory signals for many aspects of social and reproductive behavior.[4] Specialized glands are used to mark territories with pheromones, which are detected by the vomeronasal organ; this process forms a large part of the communication behavior of these primates.[4] In Old World monkeys and apes this ability is mostly vestigial, having regressed as trichromatic eyes evolved to become the main sensory organ.[89] Primates also use vocalizations, gestures, and facial expressions to convey psychological state.[90]
Primates have slower rates of development than other mammals.[30] All non-human primate infants are breastfed by their mothers and rely on them for grooming and transportation.[30] In some species, infants are protected and transported by males in the group, particularly males who may be their fathers.[30] Other relatives of the infant, such as siblings and aunts, may participate in its care as well.[30] Most primate mothers cease ovulation while breastfeeding an infant; once the infant is weaned the mother can reproduce again.[30] This often leads to weaning conflict with infants who attempt to continue breastfeeding.[30]
Primates have a longer juvenile period between weaning and sexual maturity than other mammals of similar size.[30] During the juvenile period, primates are more susceptible than adults to predation and starvation; they gain experience in feeding and avoiding predators during this time [30] They learn social and fighting skills, often through playing.[30]
Primates, especially females, have longer lifespans than other similarly sized mammals.[30]
Primates exploit a variety of food sources. It has been said that many characteristics of modern primates, including humans, derive from an early ancestor's practice of taking most of its food from the tropical canopy.[91] Most primates include fruit in their diets to obtain easily digested carbohydrates and lipids for energy.[30] However, they require other foods, such as leaves or insects, for amino acids, vitamins and minerals. Primates in the main suborder Strepsirrhini (non-tarsier prosimians) are able to synthesize vitamin C, while primates of the suborder of Haplorrhini (tarsiers, monkeys and apes) have lost the ability to synthesize vitamin C, and require it in the diet.[92]
Many primates have anatomical specializations that enable them to exploit particular foods, such as fruit, leaves, gum or insects.[30] For example, leaf eaters such as howler monkeys, black-and-white colobuses and sportive lemurs have extended digestive tracts which enable them to absorb nutrients from leaves that can be difficult to digest.[30] Marmosets, which are gum eaters, have strong incisor teeth, enabling them to open tree bark to get to the gum, and claws rather than nails, enabling them to cling to trees while feeding.[30] The Aye-aye combines rodent-like teeth with a long, thin middle finger to fill the same ecological niche as a woodpecker. It taps on trees to find insect larvae, then gnaws holes in the wood and inserts its elongated middle finger to pull the larvae out.[93] Some species have additional specializations. For example, the Grey-cheeked Mangabey has thick enamel on its teeth, enabling it to open hard fruits and seeds that other monkeys cannot.[30]
The Gelada is the only primate species that feeds primarily on grass.[94] Tarsiers are the only extant obligate carnivorous primates, exclusively eating insects, crustaceans, small vertebrates and snakes (including venomous species).[95] Capuchin monkeys, on the other hand, can exploit many different types of food, including fruit, leaves, flowers, buds, nectar, seeds, insects and other invertebrates, bird eggs, and small vertebrates such as birds, lizards, squirrels and bats.[57] The Common Chimpanzee has a varied diet that includes predation on other primate species, such as the Western Red Colobus monkey.[76][77]
Primates evolved from arboreal animals, and many species live most of their lives in trees. Most primate species live in tropical rain forests. The number of primate species within tropical areas has been shown to be positively correlated to the amount of rainfall and the amount of rain forest area.[96] Accounting for 25% to 40% of the fruit-eating animals (by weight) within tropical rainforests, primates play an important ecological role by dispersing seeds of many tree species.[97]
Some species are partially terrestrial, such as baboons and Patas Monkeys, and a few species are fully terrestrial, such as Geladas and Humans. Non-human primates live in a diverse number of forested habitats in the tropical latitudes of Africa, India, Southeast Asia, and South America, including rainforests, mangrove forests, and montane forests. There are some examples of non-human primates that live outside of the tropics; the mountain-dwelling Japanese Macaque lives in the north of Honshū where there is snow-cover eight months of the year; the Barbary Macaque lives in the Atlas Mountains of Algeria and Morocco. Primate habitats span a range of altitudes: the Black Snub-nosed Monkey has been found living in the Hengduan Mountains at altitudes of 4,700 meters (15,400 ft),[98] the Mountain Gorilla can be found at 4,200 meters (13,200 ft) crossing the Virunga Mountains,[99] and the Gelada has been found at elevations of up to 5,000 meters (16,400 ft) in the Ethiopian Highlands. Although most species are generally shy of water, a few are good swimmers and are comfortable in swamps and watery areas, including the Proboscis Monkey, De Brazza's Monkey and Allen's Swamp Monkey, which has developed small webbing between its fingers. Some primates, such as the Rhesus Macaque and gray langurs, can exploit human-modified environments and even live in cities.[73][100]
Some have hypothesized that it is the supposed close relationship and interactions between humans and non-human primates (NHPs) create pathways for the transmission of zoonotic diseases. Viruses such as Herpesviridae (most notably Herpes B Virus), Poxviridae, measles, ebola, rabies, the Marburg virus and viral hepatitis can be transmitted to humans; in some cases the viruses produce potentially fatal diseases in both humans and non-human primates.[101]
Only humans are recognized as persons and protected in law by the United Nations Universal Declaration of Human Rights.[b] The legal status of NHPs, on the other hand, is the subject of much debate, with organizations such as the Great Ape Project (GAP) campaigning to award at least some of them legal rights.[102] In June 2008, Spain became the first country in the world to recognize the rights of some NHPs when its parliament's cross-party environmental committee urged the country to comply with GAP's recommendations, which are that chimpanzees, bonobos, orangutans, and gorillas not be used for animal experiments.[103][104]
Many species of NHP are kept as pets by humans. GAP estimates that around 3,000 NHPs live as exotic pets in the United States, while the Humane Society of the United States puts the figure much higher, at around 15,000.[105] The expanding Chinese middle class has increased demand for NHPs as exotic pets in recent years.[106] Although NHP import for the pet trade was banned in the U.S. in 1975, smuggling still occurs along the United States – Mexico border, with prices ranging from US$3000 for monkeys to $30,000 for apes.[107]
Primates are used as model organisms in laboratories and have been used in space missions.[108] They serve as service animals for disabled humans. Capuchin monkeys can be trained to assist quadriplegic humans; their intelligence, memory, and manual dexterity make them ideal helpers.[109]
NHPs are kept in zoos around the globe. Historically, zoos were primarily a form of entertainment, but more recently have shifted their focus to conservation, education and research. Many zoos now feature naturalistic exhibits and educational material for the public; in the United States many participate in the Species Survival Plan (SSP), developed by the Association of Zoos and Aquariums (AZA), to maximize genetic diversity through captive breeding. Zoos and other animal welfare supporters generally oppose animal rights initiatives and the GAP's insistence that all NHPs be released from captivity for two primary reasons. First, captive-born primates lack the knowledge and experience to survive in the wild if released. Second, zoos provide living space for primates and other animals threatened with extinction in the wild.
Thousands of non-human primates are used around the world in research because of their psychological and physiological similarity to humans.[110][111] In particular, the brains and eyes of NHPs more closely parallel human anatomy than those of any other animals. NHPs are commonly used in preclinical trials, neuroscience, ophthalmology studies, and toxicity studies. Rhesus Macaques are often used, as are other Macaques, African green monkeys, chimpanzees, baboons, squirrel monkeys, and marmosets, both wild-caught and purpose-bred.[110][112] In 2005, GAP reported that 1,280 of the 3,100 NHPs living in captivity in the United States were used for experiments.[102] In 2004, the European Union used around 10,000 NHPs in such experiments; in 2005 in Great Britain, 4,652 experiments were conducted on 3,115 NHPs.[113] Governments of many nations have strict care requirements of NHPs kept in captivity. In the US, federal guidelines extensively regulate aspects of NHP housing, feeding, enrichment, and breeding.[114] European groups such as the European Coalition to End Animal Experiments are seeking a ban on all NHP use in experiments as part of the European Union's review of animal testing legislation.[115]
The International Union for Conservation of Nature (IUCN) lists more than a third of primates as critically endangered or vulnerable. Common threats to primate species include deforestation, forest fragmentation, monkey drives (resulting from primate crop raiding),[116] and primate hunting for use in medicines, as pets, and for food. Large-scale tropical forest clearing is widely regarded as the process that most threatens primates.[117][118][119] More than 90% of primate species occur in tropical forests.[118][120] The main cause of forest loss is clearing for agriculture, although commercial logging, subsistence harvesting of timber, mining, and dam construction contribute to tropical forest depletion too.[120] In Indonesia large areas of lowland forest have been cleared to increase palm oil production, and one analysis of satellite imagery concluded that during 1998 and 1999 there was a loss of 1,000 Sumatran Orangutans per year in the Leuser Ecosystem alone.[121]
Primates with a large body size (over 5 kg) have an increased extinction risk due to their increased profitability to poachers compared to smaller primates.[120] They reach sexual maturity later than other animals and have a longer period between births. Populations therefore have a slower recovery time after the loss of members to poaching or the pet trade.[122] Data for some African cities show that half of all protein consumed in urban areas comes from the bushmeat trade.[123] Endangered primates such as guenons and the Drill are hunted at levels that far exceed sustainable levels.[123] This is due to their large body size, ease of transport and profitability per animal.[123] As farming encroaches on forest habitats, primates feed on the crops, causing the farmers large economic losses.[124] Primate crop raiding gives locals a negative impression of primates, hindering conservation efforts.[125]
Madagascar, home to five endemic primate families, has experienced the greatest extinction of the recent past; since human settlement 1,500 years ago, at least eight classes and fifteen species have become extinct due to hunting and habitat destruction.[4] Among the primates wiped out were Archaeoindris (a lemur larger than a silverback gorilla) and the families Palaeopropithecidae and Archaeolemuridae.[4]
In Asia, Hinduism, Buddhism, and Islam prohibit eating primate meat; however, primates are still hunted for food.[120] Some smaller traditional religions allow the consumption of primate meat.[126][127] The pet trade and traditional medicine also increase demand for illegal hunting.[106][128][129] The Rhesus Macaque, a model organism, was protected after overtrapping threatened its numbers in the 1960s; the program was so effective that the macaques are now seen as a pest throughout their range.[119]
In Central and South America forest fragmentation and hunting are the two main problems for primates. Large tracts of forest are now rare in Central America.[117][130] This increases the amount of forest vulnerable to edge effects such as farmland encroachment, lower levels of humidity and a change in plant life.[131][132] Movement restriction results in a greater amount of inbreeding, which can cause deleterious effects leading to a population bottleneck, whereby a significant percentage of the population is lost.[133][134]
There are 21 critically endangered primates, 7 of which have remained on the IUCN's "The World's 25 Most Endangered Primates" list since the year 2000: the Silky Sifaka, Delacour's Langur, the White-headed Langur, the Gray-shanked Douc, the Tonkin Snub-nosed Langur, the Cross River Gorilla and the Sumatran Orangutan.[135] Miss Waldron's Red Colobus was recently declared extinct when no trace of the subspecies could be found from 1993 to 1999.[136] A few hunters have found and killed individuals since then, and the species' prospects remain bleak.[137]
|
|