Pharmacology (from Greek φάρμακον, pharmakon, "drug"; and -λογία, -logia) is the study of drug action.[1] More specifically, it is the study of the interactions that occur between a living organism and chemicals that affect normal or abnormal biochemical function. If substances have medicinal properties, they are considered pharmaceuticals. The field encompasses drug composition and properties, interactions, toxicology, therapy, and medical applications and antipathogenic capabilities. The two main areas of pharmacology are Pharmacodynamics and Pharmacokinetics. The former studies the effects of the drugs on biological systems, and the latter the effects of biological systems on the drugs. In broad terms, Pharmacodynamics discusses the interactions of chemicals with biological Receptors, and Pharmacokinetics discusses the absorption, distribution, metabolism, and excretion of chemicals from the biological systems. Pharmacology is not synonymous with pharmacy, which is the name used for a profession, though in common usage the two terms are confused at times. Pharmacology deals with how drugs interact within biological systems to affect function. It is the study of drugs, of the reactions of the body and drug on each other, the sources of drugs, their nature, and their properties. In contrast, pharmacy is a biomedical science concerned with preparation, dispensing, dosage, and the safe and effective use of medicines.
Dioscorides' De Materia Medica is often said to be the oldest and most valuable work in the history of pharmacology.[2] The origins of clinical pharmacology date back to the Middle Ages in Avicenna's The Canon of Medicine, Peter of Spain's Commentary on Isaac, and John of St Amand's Commentary on the Antedotary of Nicholas.[3] Clinical pharmacology owes much of its foundation to the work of William Withering.[4] Pharmacology as a scientific discipline did not further advance until the mid-19th century amid the great biomedical resurgence of that period.[5] Before the second half of the nineteenth century, the remarkable potency and specificity of the actions of drugs such as morphine, quinine and digitalis were explained vaguely and with reference to extraordinary chemical powers and affinities to certain organs or tissues.[6] The first pharmacology department was set up by Buchheim in 1847, in recognition of the need to understand how therapeutic drugs and poisons produced their effects.[5]
Early pharmacologists focused on natural substances, mainly plant extracts. Pharmacology developed in the 19th century as a biomedical science that applied the principles of scientific experimentation to therapeutic contexts.[7]
Contents |
The medical field of medication effects on humans
Effects of medication on nervous system functioning.
Effects of medication on the brain; observing changed behaviors of the body and read the effect of drugs on the brain.
Clinical testing of genetic variation that gives rise to differing response to drugs.
Application of genomic technologies to new drug discovery and further characterization of older drugs.
Study of effects of drugs in large numbers of people
Study of harmful or toxic effects of drugs
Study of metrics in Pharmacology
How medicines are dosed It also depends upon various factors like age, climate, weight, sex etc
A branch of pharmacology dealing especially with the composition, use, and development of medicinal substances of biological origin and especially medicinal substances obtained from plants also known as deriving medicines from plants
Is the study of the effects of drugs on behavior. It includes preclinical and in vivo research, such as small animal and rodent testing used to evaluate behavioral responses to novel drug treatment.
Study of Pharmaceuticals and personal care products in the environment
The study of chemicals requires intimate knowledge of the biological system affected. With the knowledge of cell biology and biochemistry increasing, the field of pharmacology has also changed substantially. It has become possible, through molecular analysis of receptors, to design chemicals that act on specific cellular signaling or metabolic pathways by affecting sites directly on cell-surface receptors (which modulate and mediate cellular signaling pathways controlling cellular function).
A chemical has, from the pharmacological point-of-view, various properties. Pharmacokinetics describes the effect of the body on the chemical (e.g. half-life and volume of distribution), and pharmacodynamics describes the chemical's effect on the body (desired or toxic).
When describing the pharmacokinetic properties of a chemical, pharmacologists are often interested in LADME:
Medication is said to have a narrow or wide therapeutic index or therapeutic window. This describes the ratio of desired effect to toxic effect. A compound with a narrow therapeutic index (close to one) exerts its desired effect at a dose close to its toxic dose. A compound with a wide therapeutic index (greater than five) exerts its desired effect at a dose substantially below its toxic dose. Those with a narrow margin are more difficult to dose and administer, and may require therapeutic drug monitoring (examples are warfarin, some antiepileptics, aminoglycoside antibiotics). Most anti-cancer drugs have a narrow therapeutic margin: toxic side-effects are almost always encountered at doses used to kill tumors.
Development of medication is a vital concern to medicine, but also has strong economical and political implications. To protect the consumer and prevent abuse, many governments regulate the manufacture, sale, and administration of medication. In the United States, the main body that regulates pharmaceuticals is the Food and Drug Administration and they enforce standards set by the United States Pharmacopoeia. In the European Union, the main body that regulates pharmaceuticals is the EMEA and they enforce standards set by the European Pharmacopoeia.
The metabolic stability and the reactivity of a library of candidate drug compounds have to be assessed for drug metabolism and toxicological studies. Many methods have been proposed for quantitative predictions in drug metabolism; one example of a recent computational method is SPORCalc[8]. If the chemical structure of a medicinal compound is altered slightly, this could slightly or dramatically alter the medicinal properties of the compound depending on the level of alteration as it relates to the structural composition of the substrate or receptor site on which it exerts its medicinal effect, a concept referred to as the structural activity relationship (SAR). This means that when a useful activity has been identified, chemists will make many similar compounds called analogues, in an attempt to maximize the desired medicinal effect(s) of the compound. This development phase can take anywhere from a few years to a decade or more and is very expensive.[9]
These new analogues need to be developed. It needs to be determined how safe the medicine is for human consumption, its stability in the human body and the best form for delivery to the desired organ system, like tablet or aerosol. After extensive testing, which can take up to 6 years, the new medicine is ready for marketing and selling.[9]
As a result of the long time required to develop analogues and test a new medicine and the fact that of every 5000 potential new medicines typically only one will ever reach the open market, this is an expensive way of doing things, costing millions of dollars. To recoup this outlay pharmaceutical companies may do a number of things:[9]
In the United States, the Food and Drug Administration (FDA) is responsible for creating guidelines for the approval and use of drugs. The FDA requires that all approved drugs fulfill two requirements:
Gaining FDA approval usually takes several years to attain. Testing done on animals must be extensive and must include several species to help in the evaluation of both the effectiveness and toxicity of the drug. The dosage of any drug approved for use is intended to fall within a range in which the drug produces a therapeutic effect or desired outcome.[10]
The safety and effectiveness of prescription drugs in the U.S. is regulated by the federal Prescription Drug Marketing Act of 1987.
The Medicines and Healthcare products Regulatory Agency (MHRA) has a similar role in the UK.
The study of pharmacology is offered in many universities worldwide in programs that differ from pharmacy programs. Students of pharmacology are trained as researchers, studying the effects of substances in order to better understand the mechanisms which might lead to new drug discoveries for example. Whereas a pharmacy student will eventually work in a pharmacy dispensing medications or some other position focused on the patient, pharmacologist will typically work within a laboratory setting.
|
|
|
|
|
|
|