Biogeography
Biogeography is the study of the distribution of biodiversity over space-(i.e. geography) and time. Over areal ecological changes, it is also tied to the concepts of species and their past, or present living 'refugium', their survival locales, or their interim living sites. It aims to reveal where organisms live, and at what abundance.[1] As writer David Quammen put it, "...biogeography does more than ask Which species? and Where. It also asks Why? and, what is sometimes more crucial, Why not?." [2] The patterns of species distribution across geographical areas can usually be explained through a combination of historical factors such as speciation, extinction, continental drift, glaciation (and associated variations in sea level, river routes, and so on), and river capture, in combination with the area and isolation of landmasses (geographic constraints) and available energy supplies.
Modern biogeography often employs the use of Geographic Information Systems (GIS), to understand the factors affecting organism distribution, and to predict future trends in organism distribution. [3] Often mathematical models, and GIS are employed to solve ecological problems that have a spatial aspect to them. [4]
History
The scientific theory of biogeography grows out of the work of Hewett Cottrell Watson (1804-1881), Alfred Russel Wallace(1823-1913) and other early evolutionary scientists. Wallace studied the distribution of flora and fauna in the Malay Archipelago in the 19th century. With the exception of Wallace and a few others, prior to the publication of The Theory of Island Biogeography by Robert MacArthur and E.O. Wilson in 1967[5] the field of biogeography was seen as a primarily historical one and as such the field was seen as a purely descriptive one.
MacArthur and Wilson changed this perception, and showed that the species richness of an area could be predicted in terms of such factors as habitat area, immigration rate and extinction rate. This gave rise to an interest in island biogeography. The application of island biogeography theory to habitat fragments spurred the development of the fields of conservation biology and landscape ecology.[6]
Classic biogeography has been expanded by the development of molecular systematics, creating a new discipline known as phylogeography. This development allowed scientists to test theories about the origin and dispersal of populations, such as island endemics. For example, while classic biogeographers were able to speculate about the origins of species in the Hawaiian Islands, phylogeography allows them to test theories of relatedness between these populations and putative source populations in Asia and North America.
Paleobiogeography
Paleobiogeography goes one step further to include paleogeographic data and considerations of plate tectonics. Using molecular analyses and corroborated by fossils, it has been possible to demonstrate that perching birds evolved first in the region of Australia or the adjacent Antarctic (which at that time lay somewhat further north and had a temperate climate). From there, they spread to the other Gondwanan continents and Southeast Asia - the part of Laurasia then closest to their origin of dispersal - in the late Paleogene, before achieving a global distribution in the early Neogene.[7] Not knowing the fact that at the time of dispersal, the Indian Ocean was much narrower than it is today, and that South America was closer to the Antarctic, one would be hard pressed to explain the presence of many "ancient" lineages of perching birds in Africa, as well as the mainly South American distribution of the suboscines.
Classification
Biogeography is a synthetic science, related to geography, biology, soil science, geology, climatology, ecology and evolution.
Some fundamentals in biogeography are
- evolution (change in genetic composition of a population)
- extinction (disappearance of a species)
- dispersal (movement of populations away from their point of origin, related to migration)
- range and distribution
- endemic areas
- vicariance
See also
(alphabetical)
- Alfred Russel Wallace
- Charles Darwin
- Continental drift
- Ecozone (biogeographic region or biogeographical realm)
- Ecological land classification
- Ecoregion
- Gravity model of migration, pertaining to Distance decay
- Important publications in biogeography
- Macroecology
- Max Carl Wilhelm Weber
- Miklos Udvardy
- Phylogeography
- Phytogeography
- Sky island
- Madrean Sky Islands
- Tepui
- Tectonic plates
- Zoogeography
Notes and References
- ↑ Martiny JBH et al. Microbial biogeography: putting microorganisms on the map Nature: FEBRUARY 2006 | VOLUME 4
- ↑ Quammen, David (1996). Song of the Dodo: Island Biogeography in an Age of Extinctions. New York: Scribner. pp. 17. ISBN 978-0-684-82712-4.
- ↑ Cavalcanti, Mauro. (2009). Biogegraphy and GIS. http://digitaltaxonomy.infobio.net/?Software:Biogeography_and_GIS
- ↑ Whittaker, R. (1998). Island Biogeography: Ecology, Evolution, and Conservation. Oxford University Press. New York.
- ↑ This work expanded their 1963 paper on the same topic.
- ↑ This applies to British and American academics; landscape ecology has a distinct genesis among European academics.
- ↑ Jønsson, Knud A. & Fjeldså, Jon (2006). Determining biogeographical patterns of dispersal and diversification in oscine passerine birds in Australia, Southeast Asia and Africa. Journal of Biogeography 33(7): 1155–1165. doi:10.1111/j.1365-2699.2006.01507.x (HTML abstract)
Further reading
- Dansereau, Pierre (1957). Biogeography: An Ecological Perspective. New York City: Ronald Press Company. ISBN 0826023304.
- MacArthur, Robert H. (1972). Geographic Ecology. New York: Harper & Row.
- McCarthy, Dennis (2009). Here be dragons : how the study of animal and plant distributions revolutionized our views of life and Earth. Oxford & New York: Oxford University Press. ISBN 9780199542468.
External links
Major journals
Biogeography |
|
Phylogeography · Zoogeography · Phytogeography · Island biogeography · Palaeobiogeography · Panbiogeography
|
|
|
Modelling ecosystems - trophic components |
|
General |
Abiotic component · Abiotic stress · Behaviour · Biogeochemical cycle · Biomass · Biotic component · Biotic stress · Carrying capacity · Competition · Ecosystem · Ecosystem ecology · Ecosystem model · Keystone species · List of feeding behaviours · Metabolic theory of ecology · Productivity
|
|
|
Producers |
|
|
Consumers |
Apex predator · Bacterivore · Carnivores · Chemoorganotroph · Foraging · Generalist and specialist species · Herbivores · Heterotroph · Heterotrophic nutrition · Mesopredator release hypothesis · Omnivores · Optimal foraging theory · Predation
|
|
Decomposers |
Chemoorganoheterotrophy · Decomposition · Detritivores · Detritus
|
|
Microorganisms |
Bacteriophage · Lithoautotroph · Lithotrophy · Microbial food web · Microbial loop · Microbial metabolism · Phage ecology
|
|
Food webs |
Cold seeps · Hydrothermal vents · Intertidal · Kelp forests · Lakes · North Pacific Subtropical Gyre · Rivers · San Francisco Estuary · Soil · Tidal pool
|
|
Trophic effects |
Ascendency · Bioaccumulation · Biomagnification · Cascade effect · Competitive exclusion principle · Copiotrophs · Dominance · Ecological efficiency · Ecological network · Ecological pyramid · Ecological succession · Energy quality · Energy Systems Language · f-ratio · Feed conversion ratio · Feeding frenzy · Mesotrophic soil · Oligotroph · Paradox of the plankton · Trophic cascade · Trophic level · Trophic mutualism · Trophic state index
|
|
Defense/counter |
Antipredator adaptations · Herbivore adaptations to plant defense · Plant defense against herbivores · Predator avoidance in schooling fish
|
|
|
|
Modelling ecosystems - other components |
|
Population ecology |
Abundance · Allee effect · Depensation · Ecological yield · Effective population size · Intraspecific competition · Logistic function · Malthusian growth model · Maximum sustainable yield · Overpopulation in wild animals · Overexploitation · Population cycle · Population dynamics · Population modeling · Population size · Predator–prey equations · Recruitment · Resilience · Small population size · Stability
|
|
|
Species |
Biodiversity · Density-dependent inhibition · Ecological effects of biodiversity · Ecological extinction · Endemic species · Flagship species · Gradient analysis · Indicator species · Introduced species · Invasive species · Latitudinal gradients in species diversity · Minimum viable population · Occupancy-abundance relationship · Population viability analysis · Rapoport's rule · Relative abundance distribution · Relative species abundance · Species diversity · Species homogeneity · Species richness · Species distribution · Species-area curve · Umbrella species
|
|
Species interaction |
|
|
Spatial ecology |
Cross-boundary subsidy · Ecocline · Ecotone · Ecotype · Disturbance · Edge effect · Foster's rule · Habitat fragmentation · Intermediate Disturbance Hypothesis · Island biogeography · Landscape ecology · Landscape epidemiology · Landscape limnology · Metapopulation · Patch dynamics · Source–sink dynamics
|
|
Niche |
Ecological niche · Ecological trap · Ecosystem engineer · Environmental niche modelling · Guild · Habitat · Limiting similarity · Niche apportionment models · Niche differentiation
|
|
Other networks |
Assembly rules · Bateman's principle · Bioluminescence · Ecological collapse · Ecological debt · Ecological deficit · Ecological energetics · Ecological indicator · Ecological threshold · Ecosystem diversity · Emergence · Kleiber's law · Liebig's law of the minimum · Marginal value theorem · Thorson's rule · Xerosere
|
|
Other |
Allometry · Alternative stable state · Balance of Nature · Biological data visualization · Biogeography · Constructal theory · Ecocline · Ecological economics · Ecological footprint · Ecological forecasting · Ecological humanities · Ecological stoichiometry · Ecopath · Ecosystem based fisheries · Endolith · Evolutionary ecology · Functional ecology · Industrial ecology · Macroecology · Microecosystem · Natural environment · Systems ecology · Theoretical ecology
|
|
List of ecology topics |
|
|
|