Motherboard

Motherboard
Asus a8n VMCSM02.jpg
The ASUS A8N VM CSM
Connects to

Microprocessors via one of:

Main memory via one of:

  • Slots
  • Sockets for external chips (on old motherboards)
  • Direct soldering of individual chips (on special purpose motherboards)

Peripherals via one of:

  • External ports
  • Internal cables

Expansion cards via one of:

Form factors ATX
microATX
AT (on older motherboards)
Baby AT (on older motherboards)
Others
Common manufacturers ASUS
Gigabyte Technology
Intel
MSI
Foxconn
Others

A motherboard is the central printed circuit board (PCB) in many modern computers and holds many of the crucial components of the system, while providing connectors for other peripherals. The motherboard is sometimes alternatively known as the main board, system board, or, on Apple computers, the logic board.[1] It is also sometimes casually shortened to mobo.[2]

Contents

History

Prior to the advent of the microprocessor, a computer was usually built in a card-cage case or mainframe with components connected by a backplane consisting of a set of slots themselves connected with wires; in very old designs the wires were discrete connections between card connector pins, but printed circuit boards soon became the standard practice. The Central Processing Unit, memory and peripherals were housed on individual printed circuit boards which plugged into the backplane.

During the late 1980s and 1990s, it became economical to move an increasing number of peripheral functions onto the motherboard (see below). In the late 1980s, motherboards began to include single ICs (called Super I/O chips) capable of supporting a set of low-speed peripherals: keyboard, mouse, floppy disk drive, serial ports, and parallel ports. As of the late 1990s, many personal computer motherboards supported a full range of audio, video, storage, and networking functions without the need for any expansion cards at all; higher-end systems for 3D gaming and computer graphics typically retained only the graphics card as a separate component.

The early pioneers of motherboard manufacturing were Michronics, Mylex, AMI, DTK, Hauppauge, Orchid Technology, Elitegroup, DFI, and a number of Taiwan-based manufacturers.

The most popular computers such as the Apple II and IBM PC had published schematic diagrams and other documentation which permitted rapid reverse-engineering and third-party replacement motherboards. Usually intended for building new computers compatible with the exemplars, many motherboards offered additional performance or other features and were used to upgrade the manufacturer's original equipment.

The term mainboard is archaically applied to devices with a single board and no additional expansions or capability. In modern terms this would include embedded systems and controlling boards in televisions, washing machines, etc. A motherboard specifically refers to a printed circuit with the capability to add/extend its performance.

Overview

An Acer E360 motherboard made by Foxconn, from 2005, with a large number of integrated peripherals. This board's nForce3 chipset lacks a traditional northbridge.

Most computer motherboards produced today are designed for IBM-compatible computers, which currently account for around 90% of global PC sales. A motherboard, like a backplane, provides the electrical connections by which the other components of the system communicate, but unlike a backplane, it also connects the central processing unit and hosts other subsystems and devices.

A typical desktop computer has its microprocessor, main memory, and other essential components connected to the motherboard. Other components such as external storage, controllers for video display and sound, and peripheral devices may be attached to the motherboard as plug-in cards or via cables, although in modern computers it is increasingly common to integrate some of these peripherals into the motherboard itself.

An important component of a motherboard is the microprocessor's supporting chipset, which provides the supporting interfaces between the CPU and the various buses and external components. This chipset determines, to an extent, the features and capabilities of the motherboard.

Modern motherboards include, at a minimum:

The Octek Jaguar V motherboard from 1993.[5] This board has 6 ISA slots but few onboard peripherals, as evidenced by the lack of external connectors.

Additionally, nearly all motherboards include logic and connectors to support commonly used input devices, such as PS/2 connectors for a mouse and keyboard. Early personal computers such as the Apple II or IBM PC included only this minimal peripheral support on the motherboard. Occasionally video interface hardware was also integrated into the motherboard; for example, on the Apple II and rarely on IBM-compatible computers such as the IBM PC Jr. Additional peripherals such as disk controllers and serial ports were provided as expansion cards.

Given the high thermal design power of high-speed computer CPUs and components, modern motherboards nearly always include heat sinks and mounting points for fans to dissipate excess heat.

CPU sockets

A CPU socket or slot is an electrical component that attaches to a printed circuit board (PCB) and is designed to house a CPU (also called a microprocessor). It is a special type of integrated circuit socket designed for very high pin counts. A CPU socket provides many functions, including a physical structure to support the CPU, support for a heat sink, facilitating replacement (as well as reducing cost), and most importantly, forming an electrical interface both with the CPU and the PCB. CPU sockets can most often be found in most desktop and server computers (laptops typically use surface mount CPUs), particularly those based on the Intel x86 architecture on the motherboard. A CPU socket type and motherboard chipset must support the CPU series and speed. Generally, with a newer AMD microprocessor, you need only select a motherboard that supports the CPU and not be concerned with the chipset.

Integrated peripherals

Block diagram of a modern motherboard, which supports many on-board peripheral functions as well as several expansion slots.

With the steadily declining costs and size of integrated circuits, it is now possible to include support for many peripherals on the motherboard. By combining many functions on one PCB, the physical size and total cost of the system may be reduced; highly integrated motherboards are thus especially popular in small form factor and budget computers.

For example, the ECS RS485M-M,[6] a typical modern budget motherboard for computers based on AMD processors, has on-board support for a very large range of peripherals:

Expansion cards to support all of these functions would have cost hundreds of dollars even a decade ago; however, as of April 2007 such highly integrated motherboards are available for as little as $30 in the USA.

Peripheral card slots

A typical motherboard of 2009 will have a different number of connections depending on its standard.

A standard ATX motherboard will typically have one PCI-E 16x connection for a graphics card, two conventional PCI slots for various expansion cards, and one PCI-E 1x (which will eventually supersede PCI). A standard EATX motherboard will have one PCI-E 16x connection for a graphics card, and a varying number of PCI and PCI-E 1x slots. It can sometimes also have a PCI-E 4x slot. (This varies between brands and models.)

Some motherboards have two PCI-E 16x slots, to allow more than 2 monitors without special hardware, or use a special graphics technology called SLI (for Nvidia) and Crossfire (for ATI). These allow 2 graphics cards to be linked together, to allow better performance in intensive graphical computing tasks, such as gaming and video editing.

As of 2007, virtually all motherboards come with at least four USB ports on the rear, with at least 2 connections on the board internally for wiring additional front ports that may be built into the computer's case. Ethernet is also included. This is a standard networking cable for connecting the computer to a network or a modem. A sound chip is always included on the motherboard, to allow sound output without the need for any extra components. This allows computers to be far more multimedia-based than before. Some motherboards often have their graphics chip built into the motherboard rather than needing a separate card. A separate card may still be used.

Temperature and reliability

Motherboards are generally air cooled with heat sinks often mounted on larger chips, such as the Northbridge, in modern motherboards. If the motherboard is not cooled properly, it can cause the computer to crash. Passive cooling, or a single fan mounted on the power supply, was sufficient for many desktop computer CPUs until the late 1990s; since then, most have required CPU fans mounted on their heat sinks, due to rising clock speeds and power consumption. Most motherboards have connectors for additional case fans as well. Newer motherboards have integrated temperature sensors to detect motherboard and CPU temperatures, and controllable fan connectors which the BIOS or operating system can use to regulate fan speed. Some computers (which typically have high-performance microprocessors, large amounts of RAM, and high-performance video cards) use a water-cooling system instead of many fans.

Some small form factor computers and home theater PCs designed for quiet and energy-efficient operation boast fan-less designs. This typically requires the use of a low-power CPU, as well as careful layout of the motherboard and other components to allow for heat sink placement.

A 2003 study[7] found that some spurious computer crashes and general reliability issues, ranging from screen image distortions to I/O read/write errors, can be attributed not to software or peripheral hardware but to aging capacitors on PC motherboards. Ultimately this was shown to be the result of a faulty electrolyte formulation.[8]

For more information on premature capacitor failure on PC motherboards, see capacitor plague.

Motherboards use electrolytic capacitors to filter the DC power distributed around the board. These capacitors age at a temperature-dependent rate, as their water based electrolytes slowly evaporate. This can lead to loss of capacitance and subsequent motherboard malfunctions due to voltage instabilities. While most capacitors are rated for 2000 hours of operation at 105 °C,[9] their expected design life roughly doubles for every 10 °C below this. At 45 °C a lifetime of 15 years can be expected. This appears reasonable for a computer motherboard. However, many manufacturers have delivered substandard capacitors, which significantly reduce life expectancy. Inadequate case cooling and elevated temperatures easily exacerbate this problem. It is possible, but tedious and time-consuming, to find and replace failed capacitors on PC motherboards.

Form factor

microATX form factor motherboard

Motherboards are produced in a variety of sizes and shapes called computer form factor, some of which are specific to individual computer manufacturers. However, the motherboards used in IBM-compatible commodity computers have been standardized to fit various case sizes. As of 2007, most desktop computer motherboards use one of these standard form factors—even those found in Macintosh and Sun computers, which have not traditionally been built from commodity components. The current desktop PC form factor of choice is ATX. A case's, motherboard and PSU form factor must all match, though some smaller form factor motherboards of the same family will fit larger cases. For example, an ATX case will usually accommodate a microATX motherboard.

Laptop computers generally use highly integrated, miniaturized and customized motherboards. This is one of the reasons that laptop computers are difficult to upgrade and expensive to repair. Often the failure of one laptop component requires the replacement of the entire motherboard, which is usually more expensive than a desktop motherboard due to the large number of integrated components.

Bootstrapping using the BIOS

Motherboards contain some non-volatile memory to initialize the system and load an operating system from some external peripheral device. Microcomputers such as the Apple II and IBM PC used ROM chips, mounted in sockets on the motherboard. At power-up, the central processor would load its program counter with the address of the boot ROM and start executing ROM instructions, displaying system information on the screen and running memory checks, which would in turn start loading memory from an external or peripheral device (disk drive). If none is available, then the computer can perform tasks from other memory stores or display an error message, depending on the model and design of the computer and version of the BIOS.

Most modern motherboard designs use a BIOS, stored in an EEPROM chip soldered to the motherboard, to bootstrap the motherboard. (Socketed BIOS chips are widely used, also.) By booting the motherboard, the memory, circuitry, and peripherals are tested and configured. This process is known as a computer Power-On Self Test (POST) and may include testing some of the following devices:

Any of the above devices can be stored with machine code instructions to load an operating system or program.

See also

References

  1. Paul Miller. "Apple sneaks new logic board into whining MacBook Pros" (2006). Engadget. http://www.engadget.com/2006/07/08/apple-sneaks-new-logic-board-into-whining-macbook-pros/. Retrieved 2008-10-23. 
  2. "mobo". Webopedia. http://www.webopedia.com/TERM/M/mobo.html. Retrieved 2008-10-23. 
  3. In the case of CPUs in BGA packages, such as the VIA C3, the CPU is directly soldered to the motherboard.
  4. As of 2007, some graphics cards (e.g. GeForce 8 and Radeon R600) require more power than the motherboard can provide, and thus dedicated connectors have been introduced to attach them directly to the power supply. (Note that most disk drives also connect to the power supply via dedicated connectors.)
  5. "Golden Oldies: 1993 mainboards". http://redhill.net.au/b/b-93.html. Retrieved 2007-06-27. 
  6. "RS485M-M (V1.0)". http://www.ecs.com.tw/ECSWebSite/Products/ProductsDetail.aspx?DetailID=654&CategoryID=1&DetailName=Feature&MenuID=46&LanID=9. Retrieved 2007-06-27. 
  7. c't Magazine, vol. 21, pp. 216-221. 2003.
  8. Yu-Tzu Chiu, Samuel K. Moore "Faults & Failures: Leaking Capacitors Muck up Motherboards" (2003-02-19) IEEE Spectrum accessed 2008-03-10
  9. See the capacitor lifetime formula at [1].

External links