ISRO logo |
|
Established | August 15, 1969 |
---|---|
Headquarters | Antariksh Bhavan, New BEL Road, Bangalore, India |
Primary spaceport | Satish Dhawan Space Centre |
Administrator | K. Radhakrishnan (Chairman) |
Budget | 5,778 crore (US$ 1.31 billion) (2009-10)[1] |
Website | ISRO's homepage |
The Indian Space Research Organisation (ISRO, Hindi: भारतीय अन्तरिक्ष अनुसंधान संगठन) is the primary body for space research under the control of the Government of India, and one of the leading space research organizations in the world. It was established in its modern form in 1969 as a result of coordinated efforts initiated earlier. Taking into consideration its budget, it is probably one of the most efficient space organizations on the globe.
Under the guidance of a number of scientists, ISRO has conducted a variety of operations for both Indian and foreign clients. ISRO's satellite launch capability is provided by indigenous launch vehicles and launch sites. In 2008, ISRO successfully launched its first lunar probe, Chandrayaan-1, while future plans include manned space missions, further lunar exploration, and interplanetary probes. ISRO has several field installations as assets, and cooperates with the international community as a part of several bilateral and multilateral agreements.
Modern space research in India is most visibly traced to the activities of scientist S.K. Mitra who conducted a series of experiments leading to the sounding of the ionosphere by application of ground based radio methods in 1920's Calcutta.[2] Later, Indian scientists like C.V. Raman and Meghnad Saha contributed to scientific principles applicable in space sciences.[2] However, it was the period after 1945 which saw important developments being made in coordinated space research in India.[2] Organized space research in India was spearheaded by two scientists: Vikram Sarabhai—founder of the Physical Research Laboratory at Ahmedabad—and Homi Bhabha, who had played a role in the establishment of the Tata Institute of Fundamental Research in 1945.[2] Initial experiments in space sciences included the study of cosmic radiation, high altitude and airborne testing of instruments, deep underground experimentation at the Kolar mines—one of the deepest mining sites in the world — and studies of the upper atmosphere.[3] Studies were carried out at research laboratories, universities, and independent locations.[3][4]
Government support became visible by 1950 when the Department of Atomic Energy (India) was founded with Homi Bhabha as secretary.[4] The Department of Atomic Energy provided funding for space research throughout India.[5] Tests on the Earth's magnetic field—studied in India since the establishment of the observatory at Colaba in 1823—and aspects of meteorology continued to yield valuable information and in 1954, Uttar Pradesh state observatory was established at the foothills of the Himalayas.[4] The Rangpur Observatory was set up in 1957 at Osmania University, Hyderabad.[4] Both these facilities enjoyed the technical support and scientific cooperation of the United States of America.[4] Space research was further encouraged by the technically inclined prime minister of India—Jawaharlal Nehru.[5] In 1957, the Soviet Union successfully launched the Sputnik and opened up possibilities for the rest of the world to conduct a space launch.[5] The Indian National Committee for Space Research (INCOSPAR) was found in 1962 with Vikram Sarabhai as its chairman.[5]
Beginning in the 1960s, close ties with the Soviet Union enabled ISRO rapidly to develop the Indian space program and advance nuclear power in India even after the first nuclear test explosion by India on 18 May 1974 at Pokhran.[6] The death of Homi Bhabha in an air crash on 24 January 1966 came as a blow to the Indian space program.[7] Following Bhabha's passing, Sarabhai was sent to assume Bhabha's place as the chairman of the Atomic Energy Commission and secretary of the Department of Atomic Energy.[7] The 1960s also saw the founding of the Space Science and Technology Centre (SSTC), Experimental Satellite Communication Earth Station (ESCES, 1967), the Sriharikota base, and the Indian Satellite System Project (ISSP).[7] The Indian Space Research Organization in its modern form was created by Vikram Sarabhai in 1969.[7] This body was to take control of all space activities in the Republic of India.[7]
The prime objective of ISRO is to develop space technology and its application to various national tasks.[8] The Indian space program was driven by the vision of Dr Vikram Sarabhai, considered the father of Indian Space Programme.[9] As stated by him:
“ | There are some who question the relevance of space activities in a developing nation. To us, there is no ambiguity of purpose. We do not have the fantasy of competing with the economically advanced nations in the exploration of the moon or the planets or manned space-flight. But we are convinced that if we are to play a meaningful role nationally, and in the community of nations, we must be second to none in the application of advanced technologies to the real problems of man and society.[8] | ” |
As also pointed out by Dr APJ Kalam:
“ | Many individuals with myopic vision questioned the relevance of space activities in a newly independent nation, which was finding it difficult to feed its population. Their vision was clear if Indians were to play meaningful role in the community of nations, they must be second to none in the application of advanced technologies to their real-life problems. They had no intention of using it as a mean to display our might.[10] | ” |
India's economic progress has made its space program more visible and active as the country aims for greater self-reliance in space technology.[11] Hennock etc. hold that India also connects space exploration to national prestige, further stating: "This year India has launched 11 satellites, including nine from other countries—and it became the first nation to launch 10 satellites on one rocket."[11]
Geopolitical and economic considerations during the 1960s and 1970s compelled India to initiate its own launch vehicle program.[12] During the first phase (1960s-1970s) the country successfully developed a sounding rockets program, and by the 1980s, research had yielded the Satellite Launch Vehicle-3 and the more advanced Augmented Satellite Launch Vehicle (ASLV), complete with operational supporting infrastructure.[12] ISRO further applied its energies to the advancement of launch vehicle technology resulting in the creation of Polar Satellite Launch Vehicle (PSLV) and Geosynchronous Satellite Launch Vehicle (GSLV) technologies.[12]
The Satellite Launch Vehicle, usually known by its abbreviation SLV or SLV-3 was a 4-stage solid-fuel light launcher. It was intended to reach a height of 500 km and carry a payload of 40 kg.[13] Its first launch took place in 1979 with 2 more in each subsequent year, and the final launch in 1983. Only two of its four test flights were successful.[14]
The Augmented Satellite Launch Vehicle, usually known by its abbreviation ASLV was a 5-stage solid propellant rocket with the capability of placing a 150 kg satellite into LEO. This project was started by the ISRO during the early 1980s to develop technologies needed for a payload to be placed into a geostationary orbit. Its design was based on Satellite Launch Vehicle.[15] The first launch test was held in 1987, and after that 3 others followed in 1988, 1992 and 1994, out of which only 2 were successful, before it was decommissioned.[14]
The Polar Satellite Launch Vehicle, usually known by its abbreviation PSLV, is an expendable launch system developed to allow India to launch its Indian Remote Sensing (IRS) satellites into sun synchronous orbits, a service that was, until the advent of the PSLV, commercially viable only from Russia. PSLV can also launch small satellites into geostationary transfer orbit (GTO). The reliability and versatility of the PSLV is proven by the fact that it has launched 30 spacecraft (14 Indian and 16 from other countries) into a variety of orbits so far.[16] In April 2008, it successfully launched 10 satellites at once, breaking a world record held by Russia.[17]
The Geosynchronous Satellite Launch Vehicle, usually known by its abbreviation GSLV, is an expendable launch system developed to enable India to launch its INSAT-type satellites into geostationary orbit and to make India less dependent on foreign rockets. At present, it is ISRO's heaviest satellite launch vehicle and is capable of putting a total payload of up to 5 tons to Low Earth Orbit.
The Geosynchronous Satellite Launch Vehicle Mark-III is a launch vehicle currently under development by the Indian Space Research Organization. It is intended to launch heavy satellites into geostationary orbit, and will allow India to become less dependent on foreign rockets for heavy lifting. The rocket is the technological successor to the GSLV, however is not derived from its predecessor. The maiden flight is scheduled to take place in 2011.[18]
India's first satellite, the Aryabhata, was launched by the Soviets in 1975. This was followed by the Rohini series of experimental satellites which were built and launched indigenously. At present, ISRO operates a large number of earth observation satellites.
INSAT (Indian National Satellite System) is a series of multipurpose geostationary satellites launched by ISRO to satisfy the telecommunications, broadcasting, meteorology and search-and-rescue needs of India. Commissioned in 1983, INSAT is the largest domestic communication system in the Asia-Pacific Region. It is a joint venture of the Department of Space, Department of Telecommunications, India Meteorological Department, All India Radio and Doordarshan. The overall coordination and management of INSAT system rests with the Secretary-level INSAT Coordination Committee.
Indian Remote Sensing satellites (IRS) are a series of earth observation satellites, built, launched and maintained by ISRO. The IRS series provides remote sensing services to the country. The Indian Remote Sensing Satellite system is the largest constellation of remote sensing satellites for civilian use in operation today in the world. All the satellites are placed in polar sun-synchronous orbit and provide data in a variety of spatial, spectral and temporal resolutions to enable several programs to be undertaken relevant to national development.
Oceansat are a series of satellites to primarily study ocean, part of IRS Series. IRS P4 is also known as Oceansat-1, was launched on 27 May 1999. On 23 September 2009 Oceansat-2 was launched.
ISRO has also launched a set of experimental geostationary satellites known as the GSAT series. Kalpana-1, ISRO's first dedicated meteorological satellite, was launched by the Polar Satellite Launch Vehicle on 12 September 2002. The satellite was originally known as MetSat-1. In February 2003 it was renamed to Kalpana-1 by the then Indian Prime Minister Atal Bihari Vajpayee in memory of Kalpana Chawla – a NASA astronaut of Indian origin who perished in Space Shuttle Columbia.
India's first mission beyond Earth's orbit was Chandrayaan-1, a lunar spacecraft which successfully entered the lunar orbit on 8 November 2008. ISRO plans to follow up Chandrayaan-1 with Chandrayaan-2 and unmanned missions to Mars and Near-Earth objects such as asteroids and comets.
Chandrayaan-1 (Sanskrit: चंद्रयान-१) is India's first mission to the moon. The unmanned lunar exploration mission includes a lunar orbiter and an impactor called the Moon Impact Probe. India launched the spacecraft using a modified version of the PSLV is C11 on 22 October 2008 from Satish Dhawan Space Centre, Sriharikota. The vehicle was successfully inserted into lunar orbit on 8 November 2008. It carries high-resolution remote sensing equipment for visible, near infrared, and soft and hard X-ray frequencies. Over its two-year operational period, it is intended to survey the lunar surface to produce a complete map of its chemical characteristics and 3-dimensional topography. The polar regions are of special interest, as they might contain ice. The lunar mission carries five ISRO payloads and six payloads from other international space agencies including NASA, ESA, and the Bulgarian Aerospace Agency, which were carried free of cost. The Chandrayaan-1 along with NASA's LRO played a major role in discovering the existence of water on the moon.[19]
The Indian Space Research Organisation had begun preparations for a mission to Mars and had received seed money of 10 crore from the government.The space agency was looking at launch opportunities between 2013 and 2015.[20] The space agency would use its Geosynchronous Satellite Launch Vehicle (GSLV) to put the satellite in orbit and was considering using ion-thrusters, liquid engines or nuclear power to propel it further towards Mars.[21] The Mars mission studies had already been completed and that space scientists were trying to collect scientific proposals and scientific objectives.[22]
The Indian Space Research Organization has been sanctioned a budget of 12,400 crore for its human spaceflight program. According to the Space Commission which passed the budget, an unmanned flight will be launched in 2013[23] and manned mission likely to launch by 2014-2015.[24] If realized in the stated time-frame, India will become only the fourth nation, after the USSR, USA and China, to successfully carry out manned missions indigenously.
The Space Capsule Recovery Experiment (SCRE or more commonly SRE or SRE-1) is an experimental Indian spacecraft which was launched using the PSLV C7 rocket, along with three other satellites. It remained in orbit for 12 days before re-entering the Earth's atmosphere and splashing down into the Bay of Bengal.
The SRE-1 was designed to demonstrate the capability to recover an orbiting space capsule, and the technology for performing experiments in the microgravity conditions of an orbiting platform. It was also intended to test thermal protection, navigation, guidance, control, deceleration and flotation systems, as well as study hypersonic aero-thermodynamics, management of communication blackouts, and recovery operations.
ISRO also plans to launch SRE-2 and SRE-3 in the near future to test advanced re-entry technology for future manned missions.
ISRO will set up an astronaut training centre in Bangalore by 2012 to prepare personnel for flights onboard the crewed vehicle. The centre will use water simulation to train the selected astronauts in rescue and recovery operations and survival in zero gravity, and will undertake studies of the radiation environment of space.
ISRO will build centrifuges to prepare astronauts for the acceleration phase of the mission. It also plans to build a new Launch pad to meet the target of launching a manned space mission by 2015. This would be the third launchpad at the Satish Dhawan Space Centre, Sriharikota.
The Indian Space Research Organisation (ISRO) is working towards a maiden manned Indian space mission vehicle that can carry three astronauts for seven days in a near earth orbit. The Indian manned spacecraft temporarily named as Orbital Vehicle intend to be the basis of indigenous Indian human spaceflight program.
The capsule will be designed to carry three people, and a planned upgraded version will be equipped with a rendezvous and docking capability. In its maiden manned mission, ISRO's largely autonomous 3-ton capsule will orbit the Earth at 248 miles (400 km) in altitude for up to seven days with a two-person crew on board. The crew vehicle would launch atop of ISRO's GSLV Mk II, currently under development. The GSLV Mk II features an indigenously developed cryogenic upper-stage engine.[25] The first test of the cryogenic engine, held on 15 April 2010, failed as the cryogenic phase did not perform as expected and rocket deviated from the planned trajectory.[26] A future launch has been scheduled for 2011. If successful then ISRO will become the sixth entity, after United States, Russia, China, Japan and Europe, to develop this technology.
Indian space era dawned when the first two-stage sounding rocket was launched from Thumba in 1963. However even before this epoch making event, noteworthy contributions were made by the Indian scientists in the following areas of space science research:
With the advent of the Indian space program, emphasis was laid on indigenous, self-reliant and state-of-the-art development of technology for immediate practical applications in the fields of space science research activities in the country.
There is a national balloon launching facility at Hyderabad jointly supported by TIFR and ISRO. This facility has been extensively used for carrying out research in high energy (i.e., x- and gamma ray) astronomy, IR astronomy, middle atmospheric trace constituents including CFCs & aerosols, ionisation, electric conductivity and electric fields.
The flux of secondary particles and X-ray and gamma-rays of atmospheric origin produced by the interaction of the cosmic rays is very low. This low background, in the presence of which one has to detect the feeble signal from cosmic sources is a major advantage in conducting hard X-ray observations from India. The second advantage is that many bright sources like Cyg X-1, Crab Nebula, Scorpius X-1 and Galactic Centre sources are observable from Hyderabad due to their favourable declination. With these considerations, an X-Ray astronomy group was formed at TIFR in 1967 and development of an instrument with an orientable X-Ray telescope for hard X-Ray observations was undertaken. The first balloon flight with the new instrument was made on 28, April 1968 in which observations of Scorpius X-1 were successfully carried out. In a succession of balloon flights made with this instrument between 1968 and 1974 a number of binary X-ray sources including Scorpious X-1, Cyg X-1, Her X-1 etc. and the diffuse cosmic X-ray background were studied. Many new and astrophysically important results were obtained from these observations.[27]
One of most important achievements of ISRO in this field was the discovery of three species of bacteria in the upper stratosphere at an altitude of between 20–40 km. The bacteria, highly resistant to ultra-violet radiation, are not found elsewhere on Earth, leading to speculation on whether they are extraterrestrial in origin. These three bacteria can be considered to be extremophiles. Until then, the upper stratosphere was believed to be inhospitable because of the high doses of Ultra-violet radiation. The bacteria were named as Bacillus isronensis in recognition of ISRO's contribution in the balloon experiments, which led to its discovery, Bacillus aryabhata after India's celebrated ancient astronomer Aryabhata and Janibacter Hoylei after the distinguished Astrophysicist Fred Hoyle.[28]
ISRO's headquarters is located at Antariksh Bhavan in Bangalore.
Facility | Location | Description |
---|---|---|
Physical Research Laboratory | Ahmedabad | Solar planetary physics, infrared astronomy, geo-cosmo physics, plasma physics, astrophysics, archaeology, and hydrology are some of the branches of study at this institute.[29] An observatory at Udaipur also falls under the control of this institution.[29] |
Semi-Conductor Laboratory | Chandigarh | Research & Development in the field of semiconductor technology, micro-electromechanical systems and process technologies relating to semiconductor processing. |
National Atmospheric Research Laboratory | Chittoor | The NARL carries out fundamental and applied research in Atmospheric and Space Sciences. |
Raman Research Institute (RRI) | Bangalore | RRI carries out research in selected areas of physics, such as astrophysics and astronomy. |
Space Applications Centre | Ahmedabad | The SAC deals with the various aspects of practical use of space technology.[29] Among the fields of research at the SAC are geodesy, satellite based telecommunications, surveying, remote sensing, meteorology, environment monitoring etc.[29] The SEC additionally operates the Delhi Earth Station.[30] |
North Eastern-Space Applications Center | Shillong | Providing developmental support to North East by undertaking specific application projects using remote sensing, GIS, satellite communication and conducting space science research. |
Facility | Location | Description |
---|---|---|
Liquid Propulsion Systems Centre | Bangalore, Thiruvananthapuram, and Mahendragiri | The LPSC handles testing and implementation of liquid propulsion control packages and helps develop engines for launch vehicles and satellites.[29] The testing is largely conducted at Mahendragiri.[29] The LPSC also constructs precision transducers.[31] |
Facility | Location | Description |
---|---|---|
ISRO Satellite Centre | Bangalore | The venue of eight successful spacecraft projects is also one of the main satellite technology bases of ISRO. The facility serves as a venue for implementing indigenous spacecrafts in India.[29] The satellites Ayrabhata, Bhaskara, APPLE, and IRS-1A were constructed at this site, and the IRS and INSAT satellite series are presently under development here.[31] |
Satish Dhawan Space Centre | Andhra Pradesh | With multiple sub-sites the Sriharikota island facility acts as a launching site for India's satellites.[29] The Sriharikota facility is also the main launch base for India's sounding rockets.[31] The centre is also home to India's largest Solid Propellant Space Booster Plant (SPROB) and houses the Static Test and Evaluation Complex (STEX).[31] |
Vikram Sarabhai Space Centre | Thiruvananthapuram | The largest ISRO base is also the main technical centre and the venue of development of the SLV-3, ASLV, and PSLV series.[29] The base supports India's Thumba Equatorial Rocket Launching Station and the Rohini Sounding Rocket program.[29] This facility is also developing the GSLV series.[29] |
Thumba Equatorial Rocket Launching Station | Thumba | TERLS is used to launch sounding rockets. |
Facility | Location | Description |
---|---|---|
Indian Deep Space Network (IDSN) | Bangalore | This network receives, processes, archives and distributes the spacecraft health data and payload data in real time. It can track and monitor satellites up to very large distances, even beyond the Moon. |
National Remote Sensing Centre | Hyderabad | The NRSC applies remote sensing to manage natural resources and study aerial surveying.[29] With centres at Balanagar and Shadnagar it also has training facilities at Dehradun in form of the Indian Institute of Remote Sensing.[29] |
Indian Space Research Organisation Telemetry, Tracking and Command Network | Bangalore (headquarters) and a number of ground stations throughout India and World.[30] | Software development, ground operations, Tracking Telemetry and Command (TTC), and support is provided by this institution.[29] ISTRAC has Tracking stations throughout the country and all over the world in Port Louis (Mauritius), Bearslake (Russia), Biak (Indonesia) and Brunei. |
Master Control Facility | Hassan; Bhopal | Geostationary satellite orbit raising, payload testing, and in-orbit operations are performed at this facility.[32] The MCF has earth stations and Satellite Control Centre (SCC) for controlling satellites.[32] A second MCF-like facility named 'MCF-B' is being constructed at Bhopal.[32] |
Facility | Location | Description |
---|---|---|
Indian Institute of Remote Sensing (IIRS) | Dehradun | Indian Institute of Remote Sensing (IIRS) under National Remote Sensing Centre, Department of Space, Govt. of India is a premier training and educational institute set up for developing trained professional in the field of Remote Sensing, Geoinformatics and GPS Technology for Natural Resources, Environmental and Disaster Management. |
Indian Institute of Space Science and Technology (IIST) | Thiruvananthapuram | The institute offers undergraduate and graduate courses in Aerospace engineering, Avionics and Physical Sciences. |
Indian Institute of Astrophysics (IIA) | Bangalore | IIA is a premier institute devoted to research in astronomy, astrophysics and related physics. |
Development and Educational Communication Unit | Ahmedabad | The centre works for education, research, and training, mainly in conjunction with the INSAT program.[29] The main activities carried out at DECU include GRAMSAT and EDUSAT projects.[31] The Training and Development Communication Channel (TDCC) also falls under the operational control of the DECU.[30] |
Facility | Location | Description |
---|---|---|
Antrix Corporation | Bangalore | The marketing agency under government control markets ISRO's hardware, manpower, and software.[32] |
Other facilities include:
ISRO plans to launch a number of new-generation Earth Observation Satellites in the near future. It will also undertake the development of new launch vehicles and spacecraft. ISRO has stated that it will send unmanned missions to Mars and Near-Earth Objects.
The Indian Regional Navigational Satellite System (IRNSS) is an autonomous regional satellite navigation system being developed by Indian Space Research Organisation which would be under total control of Indian government. The requirement of such a navigation system is driven by the fact that access to Global Navigation Satellite Systems like GPS are not guaranteed in hostile situations. ISRO plans to launch the constellation of satellites between 2010 and 2012.
ISRO is currently developing two new-generation launch vehicles, the GSLV-Mk III and the AVATAR RLV. These launch vehicles will increase ISRO's present launch capability and provide India with a greater share of the global satellite launch market.
India uses its satellites communication network – one of the largest in the world – for applications such as land management, water resources management, natural disaster forecasting, radio networking, weather forecasting, meteorological imaging and computer communication.[34] Business, administrative services, and schemes such as the National Informatics Centre (NICNET) are direct beneficiaries of applied satellite technology.[34] Dinshaw Mistry—on the subject of practical applications of the Indian space program—writes:
The INSAT-2 satellites also provide telephone links to remote areas; data transmission for organizations such as the National Stock Exchange; mobile satellite service communications for private operators, railways, and road transport; and broadcast satellite services, used by India’s state-owned television agency as well as commercial television channels. India’s Edusat (Educational Satellite), launched aboard the GSLV in 2004, was intended for adult literacy and distance learning applications in rural areas. It augmented and would eventually replace such capabilities already provided by INSAT-3B.
The IRS satellites have found applications with the Indian Natural Resource Management program, with regional Remote Sensing Service Centers in five Indian cities, and with Remote Sensing Application Centers in twenty Indian states that use IRS images for economic development applications. These include environmental monitoring, analyzing soil erosion and the impact of soil conservation measures, forestry management, determining land cover for wildlife sanctuaries, delineating groundwater potential zones, flood inundation mapping, drought monitoring, estimating crop acreage and deriving agricultural production estimates, fisheries monitoring, mining and geological applications such as surveying metal and mineral deposits, and urban planning.
India’s satellites and satellite launch vehicles have had military spin-offs. While India’s 93–124 mile (150–250 km) range Prithvi missile is not derived from the Indian space program, the intermediate range Agni missile is drawn from the Indian space program’s SLV-3. In its early years, when headed by Vikram Sarabhai and Satish Dhawan, ISRO opposed military applications for its dual-use projects such as the SLV-3. Eventually, however, the Defence Research and Development (DRDO)–based missile program borrowed human resources and technology from ISRO. Missile scientist A. P. J. Abdul Kalam (elected president of India in 2002), who had headed the SLV-3 project at ISRO, moved to DRDO to direct India’s missile program. About a dozen scientists accompanied Abdul Kalam from ISRO to DRDO, where Abdul Kalam designed the Agni missile using the SLV-3’s solidfuel first stage and a liquid-fuel (Prithvi-missile-derived) second stage. The IRS and INSAT satellites were primarily intended and used for civilian-economic applications, but they also offered military spin-offs. In 1996 New Delhi’s Ministry of Defence temporarily blocked the use of IRS-1C by India’s environmental and agricultural ministries in order to monitor ballistic missiles near India’s borders. In 1997 the Indian air force’s “Airpower Doctrine” aspired to use space assets for surveillance and battle management.[35]
Institutions like the Indira Gandhi National Open University (IGNOU) and the Indian Institute of Technology use satellites for scholarly applications.[36] Between 1975 and 1976, India conducted its largest sociological program using space technology, reaching 2400 villages through video programming in local languages aimed at educational development via ATS-6 technology developed by NASA.[37] This experiment—named Satellite Instructional Television Experiment (SITE)—conducted large scale video broadcasts resulting in significant improvement in rural education.[37]
ISRO has applied its technology to "telemedicine", directly connecting patients in rural areas to medical professionals in urban locations via satellites.[36] Since high-quality healthcare is not universally available in some of the remote areas of India, the patients in remote areas are diagnosed and analyzed by doctors in urban centres in real time via video conferencing.[36] The patient is then advised medicine and treatment.[36] The patient is then treated by the staff at one of the 'super-specialty hospitals' under instructions from the doctor.[36] Mobile telemedicine vans are also deployed to visit locations in far-flung areas and provide diagnosis and support to patients.[36]
ISRO has also helped implement India's Biodiversity Information System, completed in October 2002.[38] Nirupa Sen details the program: "Based on intensive field sampling and mapping using satellite remote sensing and geospatial modelling tools, maps have been made of vegetation cover on a 1 : 250,000 scale. This has been put together in a web-enabled database which links gene-level information of plant species with spatial information in a BIOSPEC database of the ecological hot spot regions, namely northeastern India, Western Ghats, Western Himalayas and Andaman and Nicobar Islands. This has been made possible with collaboration between the Department of Biotechnology and ISRO."[38]
The Indian IRS-P5 (CARTOSAT-1) was equipped with high-resolution panchromatic equipment to enable it for cartographic purposes.[9] IRS-P5 (CARTOSAT-1) was followed by a more advanced model named IRS-P6 developed also for agricultural applications.[9] The CARTOSAT-2 project, equipped with single panchromatic camera which supported scene-specific on-spot images, succeed the CARTOSAT-1 project.[39]
ISRO has had the benefit of International cooperation since inception.
ISRO and the Department of Space have signed formal Memorandum of Understanding agreements with a number of foreign political entities, including:-
India carries out joint operations with foreign space agencies, such as the Indo-French Megha-Tropiques Mission.[40] On 25 June 2002 India and the European Union agreed to bilateral cooperation in the field of science and technology.[41] A joint EU-India group of scholars was formed on 23 November 2001 to further promote joint research and development.[41] India holds observer status at CERN while a joint India-EU Software Education and Development Center is due at Bangalore.[41]
|
|
|