↔ ⇔ ≡
In logic and related fields such as mathematics and philosophy, if and only if (shortened iff) is a biconditional logical connective between statements. In that it is biconditional, the connective can be likened to the standard material conditional ("if") combined with its reverse ("only if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other, i.e., either both statements are true, or both are false. It is controversial whether the connective thus defined is properly rendered by the English "if and only if", with its pre-existing meaning. Of course, there is nothing to stop us stipulating that we may read this connective as "only if and if", although this may lead to confusion.
In writing, phrases commonly used, with debatable propriety, as alternatives to "if and only if" include Q is necessary and sufficient for P, P is equivalent (or materially equivalent) to Q (compare material implication), P precisely if Q, P precisely (or exactly) when Q, P exactly in case Q, and P just in case Q. Many authors regard "iff" as unsuitable in formal writing; others use it freely.
In logic formulae, logical symbols are used instead of these phrases; see the discussion of notation.
Contents |
The truth table of p ↔ q is as follows:[1]
p | q |
p ↔ q
|
---|---|---|
T | T | T |
T | F | F |
F | T | F |
F | F | T |
Note that it is equivalent to that produced by the XNOR gate, and opposite to that produced by the XOR gate.
The corresponding logical symbols are "↔", "⇔" and "≡", and sometimes "iff". These are usually treated as equivalent. However, some texts of mathematical logic (particularly those on first-order logic, rather than propositional logic) make a distinction between these, in which the first, ↔, is used as a symbol in logic formulas, while ⇔ is used in reasoning about those logic formulas (e.g., in metalogic).
Another term for this logical connective is exclusive nor.
In most logical systems, one proves a statement of the form "P iff Q" by proving "if P, then Q" and "if Q, then P" (or the inverse of "if P, then Q", i.e. "if not P, then not Q"). Proving this pair of statements sometimes leads to a more natural proof, since there are not obvious conditions in which one would infer a biconditional directly. An alternative is to prove the disjunction "(P and Q) or (not-P and not-Q)", which itself can be inferred directly from either of its disjuncts — that is, because "iff" is truth-functional, "P iff Q" follows if P and Q have both been shown true, or both false.
Usage of the abbreviation "iff" first appeared in print in John L. Kelley's 1955 book General Topology.[2] Its invention is often credited to the mathematician Paul Halmos.
Sufficiency is the inverse of necessity. That is to say, given P→Q (i.e. if P then Q), P would be a sufficient condition for Q, and Q would be a necessary condition for P. Also, given P→Q, it is true that ¬Q→¬P (where ¬ is the negation operator, i.e. "not"). This means that the relationship between P and Q, established by P→Q, can be expressed in the following, all equivalent, ways:
As an example, take (1), above, which states P→Q, where P is "the pudding in question is a custard" and Q is "Madison will eat the pudding in question". The following are four equivalent ways of expressing this very relationship:
So we see that (2), above, can be restated in the form of if...then as "If Madison will eat the pudding in question, then it is a custard"; taking this in conjunction with (1), we find that (3) can be stated as "If the pudding in question is a custard, then Madison will eat it; AND if Madison will eat the pudding, then it is a custard".
A sentence that is composed of two other sentences joined by "iff" is called a biconditional. "Iff" joins two sentences to form a new sentence. It should not be confused with logical equivalence which is a description of a relation between two sentences. The biconditional "A iff B" uses the sentences A and B, describing a relation between the states of affairs which A and B describe. By contrast "A is logically equivalent to B" mentions both sentences: it describes a logical relation between those two sentences, and not a factual relation between whatever matters they describe. See use-mention distinction for more on the difference between using a sentence and mentioning it.
The distinction is a very confusing one, and has led many a philosopher astray. Certainly it is the case that when A is logically equivalent to B, "A iff B" is true. But the converse does not hold. Reconsidering the sentence:
There is clearly no logical equivalence between the two halves of this particular biconditional. For more on the distinction, see W. V. Quine's Mathematical Logic, Section 5.
One way of looking at "A if and only if B" is that it means "A if B" (B implies A) and "A only when B" (not B implies not A). "Not B implies not A" means A implies B, so then we get two way implication.
In philosophy and logic, "iff" is used to indicate definitions, since definitions are supposed to be universally quantified biconditionals. In mathematics and elsewhere, however, the word "if" is normally used in definitions, rather than "iff". This is due to the observation that "if" in the English language has a definitional meaning, separate from its meaning as a propositional conjunction. This separate meaning can be explained by noting that a definition (for instance: A group is "abelian" if it satisfies the commutative law; or: A grape is a "raisin" if it is well dried) is not an equivalence to be proved, but a rule for interpreting the term defined. (Some authors,[3] nevertheless, explicitly indicate that the "if" of a definition means "iff"!)
Here are some examples of true statements that use "iff" - true biconditionals (the first is an example of a definition, so it should normally have been written with "if"):
Other words are also sometimes emphasized in the same way by repeating the last letter; for example orr for "Or and only Or" (the exclusive disjunction).
The statement "(A iff B)" is equivalent to the statement "(not A or B) and (not B or A)," and is also equivalent to the statement "(not A and not B) or (A and B)".
It is also equivalent to: not[(A or B) and (not A or not B)],
or more simply:
which converts into
and
which were given in verbal interpretations above.
Iff is used outside the field of logic, wherever logic is applied, especially in mathematical discussions. It has the same meaning as above: it is an abbreviation for if and only if, indicating that one statement is both necessary and sufficient for the other. This is an example of mathematical jargon. (However, as noted above, if, rather than iff, is more often used in statements of definition.)
The elements of X are all and only the elements of Y is used to mean: "for any z in the domain of discourse, z is in X if and only if z is in Y."