Histogram | |
---|---|
One of the Seven Basic Tools of Quality | |
First described by | Karl Pearson |
Purpose | To roughly assess the probability distribution of a given variable by depicting the frequencies of observations occurring in certain ranges of values |
In statistics, a histogram is a graphical display of tabular frequencies, shown as adjacent rectangles. Each rectangle is erected over an interval, with an area equal to the frequency of the observations in the interval. The height of a rectangle is also equal to the frequency density of the interval, i.e., the frequency divided by the width of the interval. The total area of the histogram is equal to the number of data. A histogram may also be based on relative frequencies. It then shows the proportion of cases that fall into each of several categories, with the total area equaling 1. The categories are usually specified as consecutive, non-overlapping intervals of a variable. The categories (intervals) must be adjacent, and often are chosen to be of the same size.[1]
Histograms are used to plot density of data, and often for density estimation: estimating the probability density function of the underlying variable. The total area of a histogram used for probability density is always normalized to 1. If the length of the intervals on the x-axis are all 1, then a histogram is identical to a relative frequency plot.
An alternative to the histogram is kernel density estimation, which uses a kernel to smooth samples. This will construct a smooth probability density function, which will in general more accurately reflect the underlying variable.
The histogram is one of the seven basic tools of quality control.[2]
Contents |
The etymology of the word histogram is uncertain. Sometimes it is said to be derived from the Greek histos 'anything set upright' (as the masts of a ship, the bar of a loom, or the vertical bars of a histogram); and gramma 'drawing, record, writing'. It is also said that Karl Pearson, who introduced the term in 1895, derived the name from "historical diagram".
As an example we consider data collected by the U.S. Census Bureau on time to travel to work (2000 census, [1], Table 2). The census found that there were 124 million people who work outside of their homes. An interesting feature of this graph is that the number recorded for "at least 15 but less than 20 minutes" is higher than for the bands on either side. This is likely to have arisen from people rounding their reported journey time. This rounding is a common phenomenon when collecting data from people.
Interval | Width | Quantity | Quantity/width |
---|---|---|---|
0 | 5 | 4180 | 836 |
5 | 5 | 13687 | 2737 |
10 | 5 | 18618 | 3723 |
15 | 5 | 19634 | 3926 |
20 | 5 | 17981 | 3596 |
25 | 5 | 7190 | 1438 |
30 | 5 | 16369 | 3273 |
35 | 5 | 3212 | 642 |
40 | 5 | 4122 | 824 |
45 | 15 | 9200 | 613 |
60 | 30 | 6461 | 215 |
90 | 60 | 3435 | 57 |
This histogram shows the number of cases per unit interval so that the height of each bar is equal to the proportion of total people in the survey who fall into that category. The area under the curve represents the total number of cases (124 million). This type of histogram shows absolute numbers.
Interval | Width | Quantity (Q) | Q/total/width |
---|---|---|---|
0 | 5 | 4180 | 0.0067 |
5 | 5 | 13687 | 0.0221 |
10 | 5 | 18618 | 0.0300 |
15 | 5 | 19634 | 0.0316 |
20 | 5 | 17981 | 0.0290 |
25 | 5 | 7190 | 0.0116 |
30 | 5 | 16369 | 0.0264 |
35 | 5 | 3212 | 0.0052 |
40 | 5 | 4122 | 0.0066 |
45 | 15 | 9200 | 0.0049 |
60 | 30 | 6461 | 0.0017 |
90 | 60 | 3435 | 0.0005 |
This histogram differs from the first only in the vertical scale. The height of each bar is the decimal percentage of the total that each category represents, and the total area of all the bars is equal to 1, the decimal equivalent of 100%. The curve displayed is a simple density estimate. This version shows proportions, and is also known as a unit area histogram.
In other words, a histogram represents a frequency distribution by means of rectangles whose widths represent class intervals and whose areas are proportional to the corresponding frequencies. The intervals are placed together in order to show that the data represented by the histogram, while exclusive, is also continuous. (E.g., in a histogram it is possible to have two connecting intervals of 10.5-20.5 and 20.5-33.5, but not two connecting intervals of 10.5-20.5 and 22.5-32.5. Empty intervals are represented as empty and not skipped.)[4]
The SOCR resource pages contain a number of hands-on interactive activities demonstrating the concept of a histogram, histogram construction and manipulation using Java applets and charts.
In a more general mathematical sense, a histogram is a function mi that counts the number of observations that fall into various disjoint categories (known as bins), whereas the graph of a histogram is merely one way to represent a histogram. Thus, if we let n be the total number of observations and k be the total number of bins, the histogram mi meets the following conditions:
A cumulative histogram is a mapping that counts the cumulative number of observations in all of the bins up to the specified bin. That is, the cumulative histogram Mi of a histogram mj is defined as:
There is no "best" number of bins, and different bin sizes can reveal different features of the data. Some theoreticians have attempted to determine an optimal number of bins, but these methods generally make strong assumptions about the shape of the distribution. You should always experiment with bin widths before choosing one (or more) that illustrate the salient features in your data. A good discussion of rules for choice of bin widths is in Modern Applied Statistics with S, § 5.6: Density Estimation.[5]
The number of bins k can be assigned directly or can be calculated from a suggested bin width h as:
The braces indicate the ceiling function.
which implicitly bases the bin sizes on the range of the data, and can perform poorly if n < 30.
where is the sample standard deviation.
which takes the square root of the number of data points in the sample (used by Excel histograms and many others)
which is based on the interquartile range.
where and are mean and biased variance of a histogram with bin-width , and .
|