Hepatocellular carcinoma

Hepatocellular carcinoma
Classification and external resources

Hepatocellular carcinoma in an individual that was hepatitis C positive. Autopsy specimen.
ICD-10 C22.0
ICD-9 155
ICD-O: M8170/3
MedlinePlus 000280
eMedicine med/787
MeSH D006528

Hepatocellular carcinoma (HCC, also called malignant hepatoma) is a primary malignancy (cancer) of the liver. Most cases of HCC are secondary to either a viral hepatitide infection (hepatitis B or C) or cirrhosis (alcoholism being the most common cause of hepatic cirrhosis).[1] In countries where hepatitis is not endemic, most malignant cancers in the liver are not primary HCC but metastasis (spread) of cancer from elsewhere in the body, e.g., the colon. Treatment options of HCC and prognosis are dependent on many factors but especially on tumor size and staging. Tumor grade is also important. High-grade tumors will have a poor prognosis, while low-grade tumors may go unnoticed for many years, as is the case in many other organs, such as the breast, where a ductal carcinoma in situ (or a lobular carcinoma in situ) may be present without any clinical signs and without correlate on routine imaging tests, although in some occasions it may be detected on more specialized imaging studies like MR mammography.

The usual outcome is poor, because only 10 - 20% of hepatocellular carcinomas can be removed completely using surgery. If the cancer cannot be completely removed, the disease is usually deadly within 3 to 6 months.[2] This is partially due to late presentation with large tumours, but also the lack of medical expertise and facilities. This is a rare tumor in the United States. A new receptor tyrosine kinase inhibitor, sorafenib has been shown in a Spanish phase III clinical trial to add two months to the lifespan of late stage HCC patients with well preserved liver function [3].

Contents

Risk factors

The main risk factors for hepatocellular carcinoma are

When hepatocellular adenomas grow to a size of more than 6–8 cm, they are considered cancerous and thus become a risk of hepatocellular carcinoma. The use of birth control pills is one risk factor to develop an adenoma.

Diabetics are also at risk for adenomas. Also, those individuals who abuse anabolic steroids are also at risk to develop hepatic adenomas.[4]

Although hepatocellular carcinoma most commonly affects adults, children who are affected with biliary atresia, infantile cholestasis, glycogen-storage diseases, and other cirrhotic diseases of the liver are predisposed to developing hepatocellular carcinoma.

Children and adolescents are unlikely to have chronic liver disease, however, if they suffer from congenital liver disorders, this fact increases the chance of developing hepatocellular carcinoma.[5]

Signs and symptoms

HCC may present with jaundice, bloating from ascites, easy bruising from blood clotting abnormalities or as loss of appetite, unintentional weight loss, abdominal pain,especially in the upper -right part, nausea, emesis, or fatigue.[6]

Pathogenesis

Hepatocellular carcinoma, like any other cancer, develops when there is a mutation to the cellular machinery that causes the cell to replicate at a higher rate and/or results in the cell avoiding apoptosis. In particular, chronic infections of hepatitis B and/or C can aid the development of hepatocellular carcinoma by repeatedly causing the body's own immune system to attack the liver cells, some of which are infected by the virus, others merely bystanders. While this constant cycle of damage followed by repair can lead to mistakes during repair which in turn lead to carcinogenesis, this hypothesis is more applicable, at present, to hepatitis C. Chronic hepatitis C causes HCC through the stage of cirrhosis. In chronic hepatitis B, however, the integration of the viral genome into infected cells can directly induce a non-cirrhotic liver to develop HCC. Alternatively, repeated consumption of large amounts of ethanol can have a similar effect. Besides, cirrhosis is commonly caused by alcoholism, chronic hepatitis B and chronic hepatitis C. The toxin aflatoxin from certain Aspergillus species of fungus is a carcinogen and aids carcinogenesis of hepatocellular cancer by building up in the liver. The combined high prevalence of rates of aflatoxin and hepatitis B in settings like China and West Africa has led to relatively high rates of heptatocellular carcinoma in these regions. Other viral hepatitides such as hepatitis A have no potential to become a chronic infection and thus are not related to hepatocellular carcinoma.

Diagnosis

Hepatocellular carcinoma (HCC) most commonly appears in a patient with chronic viral hepatitis (hepatitis B or hepatitis C, 20%) or with cirrhosis (about 80%). These patients commonly undergo surveillance with ultrasound due to the cost-effectiveness.

In patients with a higher suspicion of HCC (such as rising alpha-fetoprotein and des-gamma carboxyprothrombin levels), the best method of diagnosis involves a CT scan of the abdomen using intravenous contrast agent and three-phase scanning (before contrast administration, immediately after contrast administration, and again after a delay) to increase the ability of the radiologist to detect small or subtle tumors. It is important to optimize the parameters of the CT examination, because the underlying liver disease that most HCC patients have can make the findings more difficult to appreciate.

On CT, HCC can have three distinct patterns of growth:

A biopsy is not needed to confirm the diagnosis of HCC if certain imaging criteria are met.

The key characteristics on CT are hypervascularity in the arterial phase scans, washout or de-enhancement in the portal and delayed phase studies, a pseudocapsule and a mosaic pattern. Both calcifications and intralesional fat may be appreciated.

CT scans use contrast agents, which are typically iodine or barium based. Some patients are allergic to one or both of these contrast agents, most often iodine. Usually the allergic reaction is manageable and not life threatening.

An alternative to a CT imaging study would be the MRI. MRI's are more expensive and not as available because fewer facilities have MRI machines. More important MRI are just beginning to be used in tumor detection and fewer radiologists are skilled at finding tumors with MRI studies when it is used as a screening device. Mostly the radiologists are using MRIs to do a secondary study to look at an area where a tumor has already been detected. MRI's also use contrast agents. One of the best for showing details of liver tumors is very new: iron oxide nano-particles appears to give better results. The latter are absorbed by normal liver tissue, but not tumors or scar tissue.

In a review article of the screening, diagnosis and treatment of hepatocellular carcinoma, 4 articles were selected for comparing the accuracy of CT and MRI in diagnosing this malignancy.[7] Radiographic diagnosis was verified against post-transplantation biopsy as the gold standard. With the exception of one instance of specificity, it was discovered that MRI was more sensitive and specific than CT in all four studies.

Pathology

Micrograph of hepatocellular carcinoma. Liver biopsy. Trichrome stain.

Macroscopically, liver cancer appears as a nodular or infiltrative tumor. The nodular type may be solitary (large mass) or multiple (when developed as a complication of cirrhosis). Tumor nodules are round to oval, grey or green (if the tumor produces bile), well circumscribed but not encapsulated. The diffuse type is poorly circumscribed and infiltrates the portal veins, or the hepatic veins (rarely).

Microscopically, there are four architectural and cytological types (patterns) of hepatocellular carcinoma: fibrolamellar, pseudoglandular (adenoid), pleomorphic (giant cell) and clear cell. In well differentiated forms, tumor cells resemble hepatocytes, form trabeculae, cords and nests, and may contain bile pigment in cytoplasm. In poorly differentiated forms, malignant epithelial cells are discohesive, pleomorphic, anaplastic, giant. The tumor has a scant stroma and central necrosis because of the poor vascularization.[8]

Staging

Important features that guide treatment include: -

MRI is the best imaging method to detect the presence of a tumor capsule.

Management

There is a new drug Sorafenib which was originally used for Renal Cell Cancer that has shown promising results when used with Hepatocellular Cancer

Abbreviations: HCC, hepatocellular carcinoma; TACE, transarterial embolization/chemoembolization; PFS, progression-free survival; PS, performance status; HBV, hepatitis B virus; PEI, percutaneous ethanol injection; RFA, radiofrequency ablation; RR, response rate; MS, median survival.

A systematic review assessed 12 articles involving a total of 318 patients with hepatocellular carcinoma treated with Yttrium-90 radioembolization.[12] Excluding a study of only one patient, post-treatment CT evaluation of the tumor showed a response ranging from 29 to 100 % of patients evaluated, with all but two studies showing a response of 71 % or greater.

A group of researchers studied the use of Sorafenib in patients with advanced hepatocellular carcinoma. Sorafenib is a small molecule that inhibits tumor-cell proliferation and tumor angionesis. It also increases the rate of apoptosis in other tumor models. The results indicated that single-agent sorafenib might have a beneficial therapeutic effect. In this study, for instance, the median overall survival was of 9.2 months and the median time to progression was of 5.5 months. Also, the survival benefit represented a 31% relative reduction in the risk of death.[13]

Prevention

Since hepatitis B or C is one of the main causes of hepatocellular carcinoma, prevention of this infection is key to then prevent hepatocellular carcinoma. Thus, childhood vaccination against hepatitis B may reduce the risk of liver cancer in the future.[14]

In the case of patients with cirrhosis, alcohol consumption is to be avoided. Also, screening for hemochromatosis may be beneficial for some patients.[15]

Prognosis

The usual outcome is poor, because only 10 - 20% of hepatocellular carcinomas can be removed completely using surgery. If the cancer cannot be completely removed, the disease is usually fatal within 3 – 6 months. However, survival can vary, and occasionally people will survive much longer than 6 months. The prognosis for metastatic or unresectable hepatocellular carcinoma has recently improved due to the approval of nexavar for advanced hepatocellular carcinoma.

Epidemiology

Age-standardized death from liver cancer per 100,000 inhabitants in 2004.[16]
     no data      less than 7.5      7.5-15      15-22.5      22.5-30      30-37.5      37.5-45      45-52.5      52.5-60      60-67.5      67.5-75      75-110      more than 110

HCC is one of the most common tumors worldwide. The epidemiology of HCC exhibits two main patterns, one in North America and Western Europe and another in non-Western countries, such as those in sub-Saharan Africa, central and Southeast Asia, and the Amazon basin. Males are affected more than females usually and it is most common between the age of 30 to 50[1] Hepatocellular carcinoma causes 662,000 deaths worldwide per year[17], about half of them in China.

Non-Western Countries

In some parts of the world, such as sub-Saharan Africa and Southeast Asia, HCC is the most common cancer, generally affecting men more than women, and with an age of onset between late teens and 30s. This variability is in part due to the different patterns of hepatitis B and hepatitis C transmission in different populations - infection at or around birth predispose to earlier cancers than if people are infected later. The time between hepatitis B infection and development into HCC can be years, even decades, but from diagnosis of HCC to death the average survival period is only 5.9 months according to one Chinese study during the 1970-80s, or 3 months (median survival time) in Sub-Saharan Africa according to Manson's textbook of tropical diseases. HCC is one of the deadliest cancers in China where chronic hepatitis B is found in 90% of cases. In Japan, chronic hepatitis C is associated with 90% of HCC cases. Food infected with Aspergillus flavus (especially peanuts and corns stored during prolonged wet seasons) which produces aflatoxin poses another risk factor for HCC.

North America and Western Europe

Most malignant tumors of the liver discovered in Western patients are metastases (spread) from tumors elsewhere.[1] In the West, HCC is generally seen as a rare cancer, normally of those with pre-existing liver disease. It is often detected by ultrasound screening, and so can be discovered by health-care facilities much earlier than in developing regions such as Sub-Saharan Africa.

Acute and chronic hepatic porphyrias (acute intermittent porphyria, porphyria cutanea tarda, hereditary coproporphyria, variegate porphyria) and tyrosinemia type I are risk factors for hepatocellular carcinoma. The diagnosis of an acute hepatic porphyria (AIP, HCP, VP) should be sought in patients with hepatocellular carcinoma without typical risk factors of hepatitis B or C, alcoholic liver cirrhosis or hemochromatosis. Both active and latent genetic carriers of acute hepatic porphyrias are at risk for this cancer, although latent genetic carriers have developed the cancer at a later age than those with classic symptoms. Patients with acute hepatic porphyrias should be monitored for hepatocellular carcinoma.

Society and culture

Awareness

The Jade Ribbon Campaign is used for awareness of liver cancer and hepatitis B in the Pacific Islands, where such illnesses are more widespread than elsewhere.

Famous people

Research

Current research includes the search for the genes that are disregulated in HCC,[18] protein markers,[19] and other predictive biomarkers.[20][21] As similar research is yielding results in various other malignant diseases, it is hoped that identifying the aberrant genes and the resultant proteins could lead to the identification of pharmacological interventions for HCC.[22]

Gallery

See also

References

  1. 1.0 1.1 1.2 Kumar V, Fausto N, Abbas A (editors) (2003). Robbins & Cotran Pathologic Basis of Disease (7th ed.). Saunders. pp. 914–7. ISBN 978-0-721-60187-8. 
  2. Hepatocellular carcinoma MedlinePlus, Medical Encyclopedia
  3. http://content.nejm.org/cgi/content/abstract/359/4/378
  4. "Hepatocellular Carcinoma and Diseases". http://www.hepatocellular.org/. Retrieved May 12, 2010. 
  5. "Pathophysiology". http://emedicine.medscape.com/article/986988-overview. Retrieved May 12, 2010. 
  6. http://www.mayoclinic.com/health/liver-cancer/DS00399/DSECTION=symptoms
  7. El-Serag HB, Marrero JA, Rudolph L, Reddy KR (May 2008). "Diagnosis and treatment of hepatocellular carcinoma". Gastroenterology 134 (6): 1752–63. doi:10.1053/j.gastro.2008.02.090. PMID 18471552. http://linkinghub.elsevier.com/retrieve/pii/S0016-5085(08)00426-5. 
  8. Hepatocellular carcinoma (Photo) ATLAS OF PATHOLOGY
  9. Chen, Min-Shan; Li, Jin-Qing; Zheng, Yun; Guo, Rong-Ping; Liang, Hui-Hong; Zhang, Ya-Qi; Lin, Xiao-Jun; Lau, Wan Y (2006). "A Prospective Randomized Trial Comparing Percutaneous Local Ablative Therapy and Partial Hepatectomy for Small Hepatocellular Carcinoma". Annals of Surgery 243 (3): 321–8. doi:10.1097/01.sla.0000201480.65519.b8. 
  10. American Society of Clinical Oncology, 2005 Annual Meeting, Abstracts on Hepatobiliary Cancer
  11. Sorimachi, K (2008), "Inhibitory effect of Agaricus blazei Murill components on abnormal collagen fiber formation in human hepatocarcinoma cells", Biosci Biotechnol Biochem 72: 621–3, doi:10.1271/bbb.70700 
  12. Vente MA, Wondergem M, van der Tweel I, et al (April 2009). "Yttrium-90 microsphere radioembolization for the treatment of liver malignancies: a structured meta-analysis". Eur Radiol 19 (4): 951–9. doi:10.1007/s00330-008-1211-7. PMID 18989675. 
  13. "Sorafenib in Advanced Hepatocellular Carcinoma". http://content.nejm.org/cgi/content/full/359/4/378. Retrieved May 12, 2010. 
  14. "Hepatocellular carcinoma". https://health.google.com/health/ref/Hepatocellular+carcinoma. Retrieved May 12, 2010. 
  15. "Prevention". http://www.nlm.nih.gov/medlineplus/ency/article/000280.htm. Retrieved May 12, 2010. 
  16. "WHO Disease and injury country estimates". World Health Organization. 2009. http://www.who.int/healthinfo/global_burden_disease/estimates_country/en/index.html. Retrieved Nov. 11, 2009. 
  17. "Cancer". World Health Organization. February 2006. http://www.who.int/mediacentre/factsheets/fs297/en/. Retrieved 2007-05-24. 
  18. Genetic research in HCC Stanford Asian Liver Center
  19. Huntington Medical Research Institute News, May 2005
  20. Journal of Clinical Oncology, Special Issue on Molecular Oncology: Receptor-Based Therapy, April 2005
  21. Lau W, Leung T, Ho S, Chan M, Machin D, Lau J, Chan A, Yeo W, Mok T, Yu S, Leung N, Johnson P (1999). "Adjuvant intra-arterial iodine-131-labelled lipiodol for resectable hepatocellular carcinoma: a prospective randomised trial". Lancet 353 (9155): 797–801. doi:10.1016/S0140-6736(98)06475-7. PMID 10459961. 
  22. Thomas M, Zhu A (2005). "Hepatocellular carcinoma: the need for progress". J Clin Oncol 23 (13): 2892–9. doi:10.1200/JCO.2005.03.196. PMID 15860847. http://www.jco.org/cgi/content/full/23/13/2892. 

External links