Compact space

In mathematics, more specifically general topology and metric topology, a compact space is an abstract mathematical space in which, intuitively, whenever one takes an infinite number of "steps" in the space, eventually one must get arbitrarily close to some other point of the space. Thus a closed and bounded subset (such as a closed interval or rectangle) of a Euclidean space is compact because ultimately one's steps are forced to "bunch up" near a point of the set, a result known as the Bolzano–Weierstrass theorem, whereas Euclidean space itself is not compact because one can take infinitely many steps in any given direction without ever getting very close to any other point of the space.

Apart from closed and bounded subsets of Euclidean space, typical examples of compact spaces include spaces consisting not of geometrical points but of functions. The term compact was introduced into mathematics by Maurice Fréchet in 1906 as a distillation of this concept. Compactness in this more general situation plays an extremely important role in mathematical analysis, because many classical and important theorems of 19th century analysis, such as the extreme value theorem, are easily generalized to this situation. A typical application is furnished by the Arzelà–Ascoli theorem and in particular the Peano existence theorem, in which one is able to conclude the existence of a function with some required properties as a limiting case of some more elementary construction.

Various equivalent notions of compactness, such as sequential compactness and limit point compactness, can be developed in general metric spaces. In general topological spaces, however, the different notions of compactness are not necessarily equivalent, and the most useful notion, introduced by Pavel Alexandrov and Pavel Urysohn in 1929, involves the existence of certain finite families of open sets that "cover" the space in the sense that each point of the space must lie in some set contained in the family. This more subtle definition exhibits compact spaces as generalizations of finite sets. In spaces that are compact in this latter sense, it is often possible to patch together information that holds locally—that is, in a neighborhood of each point—into corresponding statements that hold throughout the space, and many theorems are of this character.

Contents

Introduction and definition

Intuitively speaking, a space is said to be compact if whenever one takes an infinite number of "steps" in the space, eventually one must get arbitrarily close to some other point of the space. Thus, while disks and spheres are compact, infinite lines and planes are not, nor is a disk or a sphere with a missing point. In the case of an infinite line or plane, one can set off making equal steps in any direction without approaching any point, so that neither space is compact. In the case of a disk or sphere with a missing point, one can move towards the missing point without approaching any point within the space. This demonstrates that the disk or sphere with a missing point are not compact either.

Compactness generalizes many important properties of closed and bounded intervals in the real line; that is, intervals of the form [a,b] for real numbers a and b. For instance, any continuous function defined on a compact space into an ordered set (with the order topology) such as the real line is bounded. Thus, what is known as the extreme value theorem in calculus generalizes to compact spaces. In this fashion, one can prove many important theorems in the class of compact spaces, that do not hold in the context of non-compact ones.

Various definitions of compactness may apply, depending on the level of generality. A subset of Euclidean space in particular is called compact if it is closed and bounded. This implies, by the Bolzano–Weierstrass theorem, that any infinite sequence from the set has a subsequence that converges to a point in the set. This puts a fine point on the idea of taking "steps" in a space. Various equivalent notions of compactness, such as sequential compactness and limit point compactness, can be developed in general metric spaces.

In general topological spaces, however, the different notions of compactness are not equivalent, and the most useful notion of compactness—originally called bicompactness—involves families of open sets that "cover" the space in the sense that each point of the space must lie in some set contained in the family. Specifically, a topological space is compact if, whenever a collection of open sets covers the space, some subcollection consisting only of finitely many open sets also covers the space. That this form of compactness holds for closed and bounded subsets of Euclidean space is known as the Heine–Borel theorem. Compactness, when defined in this manner, often allows one to take information that is known locally—in a neighborhood of each point of the space—and to extend it to information that holds globally throughout the space. An example of this phenomenon is Dirichlet's theorem, to which it was originally applied by Heine, that a continuous function on a compact interval is uniformly continuous: here continuity is a local property of the function, and uniform continuity the corresponding global property.

Formally, a topological space is called compact if each of its open covers has a finite subcover. Otherwise it is called non-compact. Explicitly, this means that for every arbitrary collection

\{U_\alpha\}_{\alpha\in A}

of open subsets of X such that

X=\bigcup_{\alpha\in A} U_\alpha,

there is a finite subset J of A such that

X=\bigcup_{i\in J} U_i.

Some branches of mathematics such as algebraic geometry, typically influenced by the French school of Bourbaki, use the term "quasi-compact" for the general notion, and reserve the term "compact" for topological spaces that are both Hausdorff and "quasi-compact". A single compact set is sometimes referred to as a compactum; following the Latin second declension (neuter), the corresponding plural form is compacta.

Historical development

In the 19th century, several disparate mathematical properties were understood that would later be seen as consequences of compactness. On the one hand, Bernard Bolzano (1817) had been aware that any bounded sequence of points (in the line or plane, for instance) has a subsequence that must eventually get arbitrarily close to some other point, called a limit point. Bolzano's proof relied on the method of bisection: the sequence was placed into an interval that was then divided into two equal parts, and a part containing infinitely many terms of the sequence was selected. The process could then be repeated by dividing the resulting smaller interval into smaller and smaller parts until it closes down on the desired limit point. The full significance of Bolzano's theorem, and its method of proof, would not emerge until almost 50 years later when it was rediscovered by Karl Weierstrass.[1]

In the 1880's, it became clear that results similar to the Bolzano–Weierstrass theorem could be formulated for spaces of functions rather than just numbers or geometrical points. The idea of regarding functions as themselves points of a generalized space dates back to the investigations of Giulio Ascoli and Cesare Arzelà.[2] The culmination of their investigations, the Arzelà–Ascoli theorem, was a generalization of the Bolzano–Weierstrass theorem to families of continuous functions, the precise conclusion of which was that it was possible to extract a uniformly convergent sequence of functions from a suitable family of functions. The uniform limit of this sequence then played precisely the same role as Bolzano's "limit point". Towards the beginning of the twentieth century, results similar to that of Arzelà and Ascoli began to accumulate in the area of integral equations, as investigated by David Hilbert and Erhard Schmidt. For a certain class of Green functions coming from solutions of integral equations, Schmidt had shown that a property analogous to the Arzelà–Ascoli theorem held in the sense of mean convergence—or convergence in what would later be dubbed a Hilbert space. This ultimately led to the notion of a compact operator as an offshoot of the general notion of a compact space. It was Maurice Fréchet who, in 1906, had distilled the essence of the Bolzano–Weierstrass property and coined the term compactness to refer to this general phenomenon.

However, a different notion of compactness altogether had also slowly emerged at the turn of the century from the study of the continuum, which was seen as fundamental for the rigorous formulation of analysis. In 1870, Eduard Heine showed that a continuous function defined on a closed and bounded interval was in fact uniformly continuous. In the course of the proof, he made use of a lemma that from any countable cover of the interval by smaller open intervals, it was possible to select a finite number of these that also covered it. The significance of this lemma was recognized by Émile Borel (1895), and it was generalized to arbitrary collections of intervals by Pierre Cousin (1895) and Henri Lebesgue (1904). The Heine–Borel theorem, as the result is now known, is another special property possessed by closed and bounded sets of real numbers.

This property was significant because it allowed for the passage from local information about a set (such as the continuity of a function) to global information about the set (such as the uniform continuity of a function). This sentiment was expressed by Lebesgue (1904), who also exploited it in the development of the integral now bearing his name. Ultimately the Russian school of point-set topology, under the direction of Pavel Alexandrov and Pavel Urysohn, formulated Heine–Borel compactness in a way that could be applied to the modern notion of a topological space. Alexandrov & Urysohn (1929) showed that the earlier version of compactness due to Fréchet, now called (relative) sequential compactness, under appropriate conditions followed from the version of compactness that was formulated in terms of the existence of finite subcovers. It was this notion of compactness that became the dominant one, because it was not only a stronger property, but it could be formulated in a more general setting with a minimum of additional technical machinery, as it relied only on the structure of the open sets in a space.

Examples

Examples from general topology
Examples from analysis and algebra

Theorems

Some theorems related to compactness (see the glossary of topology for the definitions):

Characterizations of compactness

The following are equivalent.

  1. A topological space X is compact.
  2. Any collection of closed subsets of X with the finite intersection property has nonempty intersection.
  3. X has a sub-base such that every cover of the space by members of the sub-base has a finite subcover (Alexander's sub-base theorem)
  4. Every net on X has a convergent subnet (see the article on nets for a proof).
  5. Every filter on X has a convergent refinement.
  6. Every ultrafilter on X converges to at least one point.
  7. Every infinite subset of X has a complete accumulation point.[7]
Euclidean space

For any subset A of Euclidean space Rn, the following are equivalent:

  1. Every open cover of A has a finite subcover.
  2. Every sequence in A has a convergent subsequence, whose limit lies in A.
  3. Every infinite subset of A has at least one accumulation point in A.
  4. A is closed set and bounded (Heine-Borel theorem).
  5. A is complete and totally bounded.

In practice, the condition (4) is easiest to verify, for example a closed interval or closed n-ball.

Metric spaces
Hausdorff spaces

Other forms of compactness

There are a number of topological properties which are equivalent to compactness in metric spaces, but are inequivalent in general topological spaces. These include the following.

While all these conditions are equivalent for metric spaces, in general we have the following implications:

Not every countably compact space is compact; an example is given by the first uncountable ordinal with the order topology. Not every compact space is sequentially compact; an example is given by 2[0,1], with the product topology (Scarborough & Stone 1966, Example 5.3).

A metric space is called pre-compact or totally bounded if any sequence has a Cauchy subsequence; this can be generalised to uniform spaces. For complete metric spaces this is equivalent to compactness. See relatively compact for the topological version.

Another related notion which (by most definitions) is strictly weaker than compactness is local compactness.

Generalizations of compactness include H-closed and the property of being an H-set in a parent space. A space is H-closed if every open cover has a finite subfamily whose union is dense. Whereas we say X is an H-set of Z if every cover of X with open sets of Z has a finite subfamily whose Z closure contains X.

See also

Notes

References

External links


This article incorporates material from Examples of compact spaces on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.