Colorectal cancer

Colorectal cancer
Classification and external resources

Diagram of the stomach, colon, and rectum
ICD-10 C18.-C20.
ICD-9 153.0-154.1
ICD-O: M8140/3 (95% of cases)
OMIM 114500
DiseasesDB 2975
MedlinePlus 000262
eMedicine med/413 med/1994 ped/3037

Colorectal cancer, also called colon cancer or large bowel cancer, includes cancerous growths in the colon, rectum and appendix. With 655,000 deaths worldwide per year, it is the fourth most common form of cancer in the United States and the third leading cause of cancer-related death in the Western world.[1][2] Colorectal cancers arise from adenomatous polyps in the colon. These mushroom-shaped growths are usually benign, but some develop into cancer over time. Localized colon cancer is usually diagnosed through colonoscopy.

Invasive cancers that are confined within the wall of the colon (TNM stages I and II) are curable with surgery. If untreated, they spread to regional lymph nodes (stage III), where up to 73% are curable by surgery and chemotherapy. Cancer that metastasizes to distant sites (stage IV) is usually not curable, although chemotherapy can extend survival, and in rare cases, surgery and chemotherapy together have seen patients through to a cure.[3] Radiation is used with rectal cancer.

On the cellular and molecular level, colorectal cancer starts with a mutation to the Wnt signaling pathway. When Wnt binds to a receptor on the cell, that sets in motion a chain of molecular events that ends with β-catenin moving into the nucleus and activating a gene on DNA. In colorectal cancer, genes along this chain are damaged. Usually, a gene called APC, which is a "brake" on the Wnt pathway, is damaged. Without a working APC brake, the Wnt pathway is stuck in the "on" position.[3]

Contents

Signs and symptoms

The symptoms of colorectal cancer depend on the location of tumor in the bowel, and whether it has spread elsewhere in the body (metastasis). Most of the symptoms may occur in other diseases as well, and hence none of the symptoms mentioned here is diagnostic of colorectal cancer. Symptoms and signs are divided into local, constitutional (affecting the whole body) and metastatic (caused by spread to other organs).

Local

Local symptoms are more likely if the tumor is located closer to the anus. There may be a change in bowel habit (new-onset constipation or diarrhea in the absence of another cause), and a feeling of incomplete defecation (rectal tenesmus) and reduction in diameter of stool; tenesmus and change in stool shape are both characteristic of rectal cancer. Lower gastrointestinal bleeding, including the passage of bright red blood in the stool, may indicate colorectal cancer, as may the increased presence of mucus. Melena, black stool with a tarry appearance, normally occurs in upper gastrointestinal bleeding (such as from a duodenal ulcer), but is sometimes encountered in colorectal cancer when the disease is located in the beginning of the large bowel.

A tumor that is large enough to fill the entire lumen of the bowel may cause bowel obstruction. This situation is characterized by constipation, abdominal pain, abdominal distension and vomiting. This occasionally leads to the obstructed and distended bowel perforating and causing peritonitis.

Certain local effects of colorectal cancer occur when the disease has become more advanced. A large tumor is more likely to be noticed on feeling the abdomen, and it may be noticed by a doctor on physical examination. The disease may invade other organs, and may cause blood or air in the urine (invasion of the bladder) or vaginal discharge (invasion of the female reproductive tract).

Constitutional

If a tumor has caused chronic occult bleeding, iron deficiency anemia may occur; this may be experienced as fatigue, palpitations and noticed as pallor (pale appearance of the skin). Colorectal cancer may also lead to weight loss, generally due to a decreased appetite.

More unusual constitutional symptoms are an unexplained fever and one of several paraneoplastic syndromes. The most common paraneoplastic syndrome is thrombosis, usually deep vein thrombosis.

Metastatic

Colorectal cancer most commonly spreads to the liver. This may go unnoticed, but large deposits in the liver may cause jaundice and abdominal pain (due to stretching of the capsule). If the tumor deposit obstructs the bile duct, the jaundice may be accompanied by other features of biliary obstruction, such as pale stools.

Risk factors

Micrograph of a tubular adenoma (left of image), a type of colonic polyp and a precursor of colorectal cancer. Normal colorectal mucosa is seen on the right. H&E stain.
Cancer and diet from NIH.png

The lifetime risk of developing colon cancer in the United States is about 7%. Certain factors increase a person's risk of developing the disease.[4] These include:

Alcohol

The WCRF panel report Food, Nutrition, Physical Activity and the Prevention of Cancer: a Global Perspective finds the evidence "convincing" that alcoholic drinks increase the risk of colorectal cancer in men.[22]

The NIAAA reports that: "Epidemiologic studies have found a small but consistent dose-dependent association between alcohol consumption and colorectal cancer[23][24] even when controlling for fiber and other dietary factors.[25][26] Despite the large number of studies, however, causality cannot be determined from the available data."[20]

"Heavy alcohol use may also increase the risk of colorectal cancer" (NCI). One study found that "People who drink more than 30 grams of alcohol per day (and especially those who drink more than 45 grams per day) appear to have a slightly higher risk for colorectal cancer."[27] Another found that "The consumption of one or more alcoholic beverages a day at baseline was associated with approximately a 70% greater risk of colon cancer."[28][29][27]

One study found that "While there was a more than twofold increased risk of significant colorectal neoplasia in people who drink spirits and beer, people who drank wine had a lower risk. In our sample, people who drank more than eight servings of beer or spirits per week had at least a one in five chance of having significant colorectal neoplasia detected by screening colonoscopy.".[30]

Other research suggests that "to minimize your risk of developing colorectal cancer, it's best to drink in moderation."[20]

On its colorectal cancer page, the National Cancer Institute does not list alcohol as a risk factor;[31] however, on another page it states, "Heavy alcohol use may also increase the risk of colorectal cancer".[32]

Drinking may be a cause of earlier onset of colorectal cancer.[33]

Pathogenesis

Colorectal cancer is a disease originating from the epithelial cells lining the colon or rectum of the gastrointestinal tract, as a result of mutations along the 'Wnt signaling pathway. Some of the mutations are inherited, and others are acquired.[34][35] The most commonly mutated gene in all colorectal cancer is the APC gene, which produces the APC protein. The APC protein is the "brake" on the β-catenin protein. Without APC, β-catinin moves into the nucleus, binds to DNA, and activates more proteins. (If APC is not mutated in colorectal cancer, then β-catinin itself is.)[3]

Beyond the defects in the Wnt-APC-beta-catinin signaling pathway, other mutations must occur for the cell to become cancerous. The TP53 protein, produced by the p53 gene, normally monitors cell division and kills cells if they have Wnt pathway defects. Eventually, a cell line acquires a mutation in the p53 gene and transforms the tissue from an adenoma into an invasive carcinoma. (Sometimes p53 is not mutated, but another protective protein named BAX is.)[3]

Other apoptotic proteins commonly deactivated in colorectal cancers are TGF-β and DCC (Deleted in Colorectal Cancer). TGF-β has a deactivating mutation in at least half of colorectal cancers. Sometimes TGF-β is not deactivated, but a downstream protein named SMAD is.[3] DCC commonly has deletion of its chromosome segment in colorectal cancer.[36]

Some genes are oncogenes -- they are overexpressed in colorectal cancer. For example, RAS, RAF, and PI3K, which normally encourage the cell to divide in response to growth factors, can become mutated with mutations that make them oversignal the cell. PTEN normally inhibits PI3K, but sometimes PTEN gets mutated.[3]

Diagnosis

Endoscopic image of colon cancer identified in sigmoid colon on screening colonoscopy in the setting of Crohn's disease.

Colorectal cancer can take many years to develop and early detection of colorectal cancer greatly improves the chances of a cure. The National Cancer Policy Board of the Institute of Medicine estimated in 2003 that even modest efforts to implement colorectal cancer screening methods would result in a 29 percent drop in cancer deaths in 20 years. Despite this, colorectal cancer screening rates remain low.[37] Therefore, screening for the disease is recommended in individuals who are at increased risk. There are several different tests available for this purpose.

In the United States, colonoscopy or FOBT plus sigmoidoscopy are the preferred screening options.

Other screening methods

Monitoring

Carcinoembryonic antigen (CEA) is a protein found on virtually all colorectal tumors. CEA may be used to monitor and assess response to treatment in patients with metastatic disease. CEA can also be used to monitor recurrence in patients post-operatively.

Pathology

Gross appearance of a colectomy specimen containing two adenomatous polyps (the brownish oval tumors above the labels, attached to the normal beige lining by a stalk) and one invasive colorectal carcinoma (the crater-like, reddish, irregularly shaped tumor located above the label).
Gross appearance of a colectomy specimen containing one invasive colorectal carcinoma (the crater-like, reddish, irregularly shaped tumor).
Micrograph of an invasive adenocarcinoma (the most common type of colorectal cancer). The cancerous cells are seen in the center and at the bottom right of the image (blue). Near normal colon-lining cells are seen at the top right of the image.
Histopathologic image of colonic carcinoid stained by hematoxylin and eosin.

The pathology of the tumor is usually reported from the analysis of tissue taken from a biopsy or surgery. A pathology report will usually contain a description of cell type and grade. The most common colon cancer cell type is adenocarcinoma which accounts for 95% of cases. Other, rarer types include lymphoma and squamous cell carcinoma.

Cancers on the right side (ascending colon and cecum) tend to be exophytic, that is, the tumour grows outwards from one location in the bowel wall. This very rarely causes obstruction of feces, and presents with symptoms such as anemia. Left-sided tumours tend to be circumferential, and can obstruct the bowel much like a napkin ring.

Adenocarcinoma is a malignant epithelial tumor, originating from glandular epithelium of the colorectal mucosa. It invades the wall, infiltrating the muscularis mucosae, the submucosa and thence the muscularis propria. Tumor cells describe irregular tubular structures, harboring pluristratification, multiple lumens, reduced stroma ("back to back" aspect). Sometimes, tumor cells are discohesive and secrete mucus, which invades the interstitium producing large pools of mucus/colloid (optically "empty" spaces) - mucinous (colloid) adenocarcinoma, poorly differentiated. If the mucus remains inside the tumor cell, it pushes the nucleus at the periphery - "signet-ring cell." Depending on glandular architecture, cellular pleomorphism, and mucosecretion of the predominant pattern, adenocarcinoma may present three degrees of differentiation: well, moderately, and poorly differentiated.[41]

Most colorectal cancer tumors are thought to be cyclooxygenase-2 (COX-2) positive. This enzyme is generally not found in healthy colon tissue, but is thought to fuel abnormal cell growth.

Staging

Colon cancer staging is an estimate of the amount of penetration of a particular cancer. It is performed for diagnostic and research purposes, and to determine the best method of treatment. The systems for staging colorectal cancers depend on the extent of local invasion, the degree of lymph node involvement and whether there is distant metastasis.

Definitive staging can only be done after surgery has been performed and pathology reports reviewed. An exception to this principle would be after a colonoscopic polypectomy of a malignant pedunculated polyp with minimal invasion. Preoperative staging of rectal cancers may be done with endoscopic ultrasound. Adjunct staging of metastasis include Abdominal Ultrasound, CT, PET Scanning, and other imaging studies.

The most common staging system is the TNM (for tumors/nodes/metastases) system, from the American Joint Committee on Cancer (AJCC). The TNM system assigns a number based on three categories. "T" denotes the degree of invasion of the intestinal wall, "N" the degree of lymphatic node involvement, and "M" the degree of metastasis. The broader stage of a cancer is usually quoted as a number I, II, III, IV derived from the TNM value grouped by prognosis; a higher number indicates a more advanced cancer and likely a worse outcome. Details of this system are in the graph below:

AJCC stage TNM stage TNM stage criteria for colorectal cancer[42]
Stage 0 Tis N0 M0 Tis: Tumor confined to mucosa; cancer-in-situ
Stage I T1 N0 M0 T1: Tumor invades submucosa
Stage I T2 N0 M0 T2: Tumor invades muscularis propria
Stage II-A T3 N0 M0 T3: Tumor invades subserosa or beyond (without other organs involved)
Stage II-B T4 N0 M0 T4: Tumor invades adjacent organs or perforates the visceral peritoneum
Stage III-A T1-2 N1 M0 N1: Metastasis to 1 to 3 regional lymph nodes. T1 or T2.
Stage III-B T3-4 N1 M0 N1: Metastasis to 1 to 3 regional lymph nodes. T3 or T4.
Stage III-C any T, N2 M0 N2: Metastasis to 4 or more regional lymph nodes. Any T.
Stage IV any T, any N, M1 M1: Distant metastases present. Any T, any N.

Dukes system

Micrograph of a colorectal adenocarcinoma metastasis to a lymph node. The cancerous cells are at the top center-left of the image, in glands (circular/ovoid structures) and eosinophilic (bright pink). H&E stain.

Dukes classification is an older and less complicated staging system, that predates the TNM system, and was first proposed by Dr. Cuthbert Dukes in 1932; it identifies the stages as:[43]

A few cancer centers still use this staging system.

Astler-Coller

A: Tumor limited to mucosa; carcinoma in situ B1: Tumor grows through muscularis mucosae but not through muscularis propria B2: Tumor grows beyond muscularis propria C1: Stage B1 with regional lymph node metastases C2: Stage B2 with regional lymph node metastases D: Distant metastases.

Additional Staging

venous invasion (v)

v0 no venous invasion
v1 microscopic venous invasion
v2 macroscopic venous invasion

lymphatic invasion (l)

l0 no lymphatic vessel invasion
l1 lymphatic vessel invasion

histologic grade (G)

g1 well differentiated
g2 moderately differentiated
g3 poorly differentiated
g4 undiffererentiated

Prevention

Most colorectal cancers should be preventable, through increased surveillance, improved lifestyle, and, probably, the use of dietary chemopreventative agents.

Surveillance

Most colorectal cancer arise from adenomatous polyps. These lesions can be detected and removed during colonoscopy. Studies show this procedure would decrease by > 80% the risk of cancer death, provided it is started by the age of 50, and repeated every 5 or 10 years.[44]

As per current guidelines under National Comprehensive Cancer Network, in average risk individuals with negative family history of colon cancer and personal history negative for adenomas or Inflammatory Bowel diseases, flexible sigmoidoscopy every 5 years with fecal occult blood testing annually or double contrast barium enema are other options acceptable for screening rather than colonoscopy every 10 years (which is currently the Gold-Standard of care).

Lifestyle and nutrition

The comparison of colorectal cancer incidence in various countries strongly suggests that sedentarity, overeating (i.e., high caloric intake), and perhaps a diet high in meat (red or processed) could increase the risk of colorectal cancer. In contrast, a healthy body weight, physical fitness, and good nutrition decreases cancer risk in general. Accordingly, lifestyle changes could decrease the risk of colorectal cancer as much as 60-80%.[45]

A high intake of dietary fiber (from eating fruits, vegetables, cereals, and other high fiber food products) has, until recently, been thought to reduce the risk of colorectal cancer and adenoma. In the largest study ever to examine this theory (88,757 subjects tracked over 16 years), it has been found that a fiber rich diet does not reduce the risk of colon cancer.[46] A 2005 meta-analysis study further supports these findings.[47]

The Harvard School of Public Health states: "Health Effects of Eating Fiber: Long heralded as part of a healthy diet, fiber appears to reduce the risk of developing various conditions, including heart disease, diabetes, diverticular disease, and constipation. Despite what many people may think, however, fiber probably has little, if any effect on colon cancer risk."[48]

Chemoprevention

More than 200 agents, including the above cited phytochemicals, and other food components like calcium or folic acid (a B vitamin), and NSAIDs like aspirin, are able to decrease carcinogenesis in pre-clinical development models: Some studies show full inhibition of carcinogen-induced tumours in the colon of rats. Other studies show strong inhibition of spontaneous intestinal polyps in mutated mice (Min mice). Chemoprevention clinical trials in human volunteers have shown smaller prevention, but few intervention studies have been completed today. The "chemoprevention database" shows the results of all published scientific studies of chemopreventive agents, in people and in animals.[49]

Aspirin chemoprophylaxis

Aspirin should not be taken routinely to prevent colorectal cancer, even in people with a family history of the disease, because the risk of bleeding and kidney failure from high dose aspirin (300 mg or more) outweigh the possible benefits.[50]

A clinical practice guideline of the U.S. Preventive Services Task Force (USPSTF) recommended against taking aspirin (grade D recommendation).[51] The Task Force acknowledged that aspirin may reduce the incidence of colorectal cancer, but "concluded that harms outweigh the benefits of aspirin and NSAID use for the prevention of colorectal cancer". A subsequent meta-analysis concluded "300 mg or more of aspirin a day for about 5 years is effective in primary prevention of colorectal cancer in randomised controlled trials, with a latency of about 10 years".[52] However, long-term doses over 81 mg per day may increase bleeding events.[53]

Calcium

The meta-analysis by the Cochrane Collaboration of randomized controlled trials published through 2002 concluded "Although the evidence from two RCTs suggests that calcium supplementation might contribute to a moderate degree to the prevention of colorectal adenomatous polyps, this does not constitute sufficient evidence to recommend the general use of calcium supplements to prevent colorectal cancer.".[54] Subsequently, one randomized controlled trial by the Women's Health Initiative (WHI) reported negative results.[55] A second randomized controlled trial reported reduction in all cancers, but had insufficient colorectal cancers for analysis.[56]

Vitamin D

A scientific review undertaken by the National Cancer Institute found that vitamin D was beneficial in preventing colorectal cancer, which showed an inverse relationship with blood levels of 80 nmol/L or higher associated with a 72% risk reduction compared with lower than 50 nmol/L.[57]. A possible mechanism is inhibition of Hedgehog signal transduction.[58]

Management

The treatment depends on the staging of the cancer. When colorectal cancer is caught at early stages (with little spread) it can be curable. However, when it is detected at later stages (when distant metastases are present) it is less likely to be curable.

Surgery remains the primary treatment while chemotherapy and/or radiotherapy may be recommended depending on the individual patient's staging and other medical factors.

Because colon cancer primarily affects the elderly, it can be a challenge to determine how aggressively to treat a particular patient, especially after surgery. Clinical trials suggest that "otherwise fit" elderly patients fare well if they have adjuvant chemotherapy after surgery, so chronological age alone should not be a contraindication to aggressive management.[59]

Surgery

Surgeries can be categorised into curative, palliative, bypass, fecal diversion, or open-and-close.

Curative Surgical treatment can be offered if the tumor is localized.

In case of multiple metastases, palliative (non curative) resection of the primary tumor is still offered in order to reduce further morbidity caused by tumor bleeding, invasion, and its catabolic effect. Surgical removal of isolated liver metastases is, however, common and may be curative in selected patients; improved chemotherapy has increased the number of patients who are offered surgical removal of isolated liver metastases.

If the tumor invaded into adjacent vital structures which makes excision technically difficult, the surgeons may prefer to bypass the tumor (ileotransverse bypass) or to do a proximal fecal diversion through a stoma.

The worst case would be an open-and-close surgery, when surgeons find the tumor unresectable and the small bowel involved; any more procedures are thought by some to do more harm than good to the patient. This is uncommon with the advent of laparoscopy and better radiological imaging. Most of these cases formerly subjected to "open and close" procedures are now diagnosed in advance and surgery avoided.

Laparoscopic-assisted colectomy is a minimally invasive technique that can reduce the size of the incision and may reduce post-operative pain.

As with any surgical procedure, colorectal surgery may result in complications including

Chemotherapy

Chemotherapy is used to reduce the likelihood of metastasis developing, shrink tumor size, or slow tumor growth. Chemotherapy is often applied after surgery (adjuvant), before surgery (neo-adjuvant), or as the primary therapy (palliative). The treatments listed here have been shown in clinical trials to improve survival and/or reduce mortality rate and have been approved for use by the US Food and Drug Administration. In colon cancer, chemotherapy after surgery is usually only given if the cancer has spread to the lymph nodes (Stage III).

At the 2008 annual meeting of the American Society of Clinical Oncology, researchers announced that colorectal cancer patients that have a mutation in the KRAS gene do not respond to certain therapies, those that inhibit the epidermal growth factor receptor (EGFR)--namely Erbitux (cetuximab) and Vectibix (panitumumab).[62] Following recommendations by ASCO, patients should now be tested for the KRAS gene mutation before being offered these EGFR-inhibiting drugs.[63] In July 2009, the US Food and Drug Administration (FDA) updated the labels of two anti-EGFR monoclonal antibody drugs (panitumumab (Vectibix) and cetuximab (Erbitux)) indicated for treatment of metastatic colorectal cancer to include information about KRAS mutations.[64]

However, having the normal KRAS version does not guarantee that these drugs will benefit the patient.[62]

“The trouble with the KRAS mutation is that it’s downstream of EGFR,” says Richard Goldberg, MD, director of oncology at the Lineberger Comprehensive Cancer Center at the University of North Carolina. “It doesn’t matter if you plug the socket if there’s a short downstream of the plug. The mutation turns [EGFR] into a switch that’s always on.” But this doesn’t mean that having normal, or wild-type, KRAS is a fail-safe. “It isn’t foolproof,” cautions Goldberg. “If you have wild-type KRAS, you’re more likely to respond, but it’s not a guarantee.” Tumors shrink in response to these drugs in up to 40 percent of patients with wild-type KRAS, and progression-free and overall survival is increased.

The cost benefit of testing patients for the KRAS gene could potentially save about $740 million a year by not providing EGFR-inhibiting drugs to patients who would not benefit from the drugs. "With the assumption that patients with mutated Kras (35.6% of all patients) would not receive cetuximab (other studies have found Kras mutation in up to 46% of patients), theoretical drug cost savings would be $753 million; considering the cost of Kras testing, net savings would be $740 million."[65]

Radiation therapy

Radiotherapy is not used routinely in colon cancer, as it could lead to radiation enteritis, and it is difficult to target specific portions of the colon. It is more common for radiation to be used in rectal cancer, since the rectum does not move as much as the colon and is thus easier to target. Indications include:

Sometimes chemotherapy agents are used to increase the effectiveness of radiation by sensitizing tumor cells if present.

Immunotherapy

Bacillus Calmette-Guérin (BCG) is being investigated as an adjuvant mixed with autologous tumor cells in immunotherapy for colorectal cancer.[67]

Cancer Vaccine

TroVax, a cancer vaccine,[68] produced by Oxford BioMedica [69], is in Phase III trials for renal cancers, and phase III trials are planned for colon cancers.[70]

Treatment of liver metastases

According to the American Cancer Society statistics in 2006,[71] over 20% of patients present with metastatic (stage IV) colorectal cancer at the time of diagnosis, and up to 25% of this group will have isolated liver metastasis that is potentially resectable. Lesions which undergo curative resection have demonstrated 5-year survival outcomes now exceeding 50%.[72]

Resectability of a liver metastasis is determined using preoperative imaging studies (CT or MRI), intraoperative ultrasound, and by direct palpation and visualization during resection. Lesions confined to the right lobe are amenable to en bloc removal with a right hepatectomy (liver resection) surgery. Smaller lesions of the central or left liver lobe may sometimes be resected in anatomic "segments", while large lesions of left hepatic lobe are resected by a procedure called hepatic trisegmentectomy. Treatment of lesions by smaller, non-anatomic "wedge" resections is associated with higher recurrence rates. Some lesions which are not initially amenable to surgical resection may become candidates if they have significant responses to preoperative chemotherapy or immunotherapy regimens. Lesions which are not amenable to surgical resection for cure can be treated with modalities including radio-frequency ablation (RFA), cryoablation, and chemoembolization.

Patients with colon cancer and metastatic disease to the liver may be treated in either a single surgery or in staged surgeries (with the colon tumor traditionally removed first) depending upon the fitness of the patient for prolonged surgery, the difficulty expected with the procedure with either the colon or liver resection, and the comfort of the surgery performing potentially complex hepatic surgery.

Aspirin

A study published in 2009 found that Aspirin reduces risk of colorectal neoplasia in randomized trials and inhibits tumor growth and metastases in animal models. The influence of aspirin on survival after diagnosis of colorectal cancer is unknown [73]. Several reports including a prospective cohort of 1,279 people diagnosed with stages I-III (non-metastatic) colorectal cancer[74] have suggested a significant improvement in cancer-specific survival in a subset of patients using aspirin[75].

Cimetidine

Cimetidine is being investigated in Japan as an adjuvant for adenocarcinomas,[76] including for stage III[77] and stage IV[78] colorectal cancers biomarked with overexpressed sialyl Lewis X and A epitopes. Multiple small trials suggest a significant survival improvement in the subset of patients with the sLeX and sLeA biomarkers that take cimetidine treatment perioperatively, through several mechanisms[3].

Support therapies

Cancer diagnosis very often results in an enormous change in the patient's psychological wellbeing. Various support resources are available from hospitals and other agencies which provide counseling, social service support, cancer support groups, and other services. These services help to mitigate some of the difficulties of integrating a patient's medical complications into other parts of their life.

Prognosis

Survival is directly related to detection and the type of cancer involved. Survival rates for early stage detection is about 5 times that of late stage cancers. CEA level is also directly related to the prognosis of disease, since its level correlates with the bulk of tumor tissue.

Follow-up

Micrograph of a colorectal villous adenoma. These lesions are considered pre-cancerous. H&E stain.

The aims of follow-up are to diagnose in the earliest possible stage any metastasis or tumors that develop later but did not originate from the original cancer (metachronous lesions).

The U.S. National Comprehensive Cancer Network and American Society of Clinical Oncology provide guidelines for the follow-up of colon cancer.[79][80] A medical history and physical examination are recommended every 3 to 6 months for 2 years, then every 6 months for 5 years. Carcinoembryonic antigen blood level measurements follow the same timing, but are only advised for patients with T2 or greater lesions who are candidates for intervention. A CT-scan of the chest, abdomen and pelvis can be considered annually for the first 3 years for patients who are at high risk of recurrence (for example, patients who had poorly differentiated tumors or venous or lymphatic invasion) and are candidates for curative surgery (with the aim to cure). A colonoscopy can be done after 1 year, except if it could not be done during the initial staging because of an obstructing mass, in which case it should be performed after 3 to 6 months. If a villous polyp, polyp >1 centimeter or high grade dysplasia is found, it can be repeated after 3 years, then every 5 years. For other abnormalities, the colonoscopy can be repeated after 1 year.

Routine PET or ultrasound scanning, chest X-rays, complete blood count or liver function tests are not recommended.[79][80] These guidelines are based on recent meta-analyses showing that intensive surveillance and close follow-up can reduce the 5-year mortality rate from 37% to 30%.[81][82][83]

Epidemiology

Age-standardized death from colorectal cancer per 100,000 inhabitants in 2004.[84]
     no data      less than 2.5      2.5-5      5-7.5      7.5-10      10-12.5      12.5-15      15-17.5      17.5-20      20-22.5      22.5-25      25-27.5      more than 27.5

Society and culture

Notable patients

Research

Mathematical modeling

Colorectal cancer has been the subject of mathematical modeling for many years.[90][91]

See also

References

  1. "Cancer". World Health Organization. February 2006. http://www.who.int/mediacentre/factsheets/fs297/en/. Retrieved 24 May 2007. 
  2. "Cancer". National Cancer Institute. 2009. http://www.cancer.gov/cancertopics/commoncancers. 
  3. 3.0 3.1 3.2 3.3 3.4 3.5 Markowitz SD, Bertagnolli MM (December 2009). "Molecular basis of colorectal cancer". N. Engl. J. Med. 361 (25): 2449–60. doi:10.1056/NEJMra0804588. PMID 20018966. 
  4. Levin KE, Dozois RR (1991). "Epidemiology of large bowel cancer". World J Surg 15 (5): 562–7. doi:10.1007/BF01789199. PMID 1949852. 
  5. Penn State University health and disease information
  6. Strate LL, Syngal S (April 2005). "Hereditary colorectal cancer syndromes". Cancer Causes Control 16 (3): 201–13. doi:10.1007/s10552-004-3488-4. PMID 15947872. 
  7. American Cancer Society Smoking Linked to Increased Colorectal Cancer Risk - New Study Links Smoking to Increased Colorectal Cancer Risk 6 December 2000
  8. 'Smoking Ups Colon Cancer Risk' at Medline Plus
  9. Chao A, Thun MJ, Connell CJ, et al. (January 2005). "Meat consumption and risk of colorectal cancer". JAMA 293 (2): 172–82. doi:10.1001/jama.293.2.172. PMID 15644544. http://jama.ama-assn.org/cgi/pmidlookup?view=long&pmid=15644544. 
  10. "Red meat 'linked to cancer risk'". BBC News: Health. 15 June 2005. http://news.bbc.co.uk/2/hi/health/4088824.stm. 
  11. Park Y, Hunter DJ, Spiegelman D, et al. (December 2005). "Dietary fiber intake and risk of colorectal cancer: a pooled analysis of prospective cohort studies". JAMA 294 (22): 2849–57. doi:10.1001/jama.294.22.2849. PMID 16352792. http://jama.ama-assn.org/cgi/pmidlookup?view=long&pmid=16352792. 
  12. http://carcin.oxfordjournals.org/cgi/content/full/21/5/999
  13. Clark LC, Dalkin B, Krongrad A, et al. (May 1998). "Decreased incidence of prostate cancer with selenium supplementation: results of a double-blind cancer prevention trial". Br J Urol 81 (5): 730–4. PMID 9634050. http://pt.wkhealth.com/pt/re/bjui/abstract.00002414-199805000-00016.htm;jsessionid=JqcL016RGtWFPmKj7GL9x6zYp0znbqdF2xz0fbGz5RtW8mnlCK22!289474761!181195629!8091!-1. 
  14. Finley JW, Davis CD, Feng Y (September 2000). "Selenium from high selenium broccoli protects rats from colon cancer". J. Nutr. 130 (9): 2384–9. PMID 10958840. http://jn.nutrition.org/cgi/pmidlookup?view=long&pmid=10958840. 
  15. 15.0 15.1 Gregory L. Brotzman and Russell G. Robertson (2006). "Colorectal Cancer Risk Factors". Colorectal Cancer. Armenian Health Network, Health.am. http://www.health.am/cr/colorectal-cancer/. Retrieved 16 January 2008. 
  16. Jerome J. DeCosse, MD; George J. Tsioulias, MD; Judish S. Jacobson, MPH (February 1994). "Colorectal cancer: detection, treatment, and rehabilitation" (PDF). Colorectal cancer: detection, treatment, and rehabilitation (A Cancer Journal for Clinicians). http://caonline.amcancersoc.org/cgi/reprint/44/1/27.pdf. Retrieved 16 January 2008. 
  17. Hamilton SR (August 1985). "Colorectal carcinoma in patients with Crohn's disease". Gastroenterology 89 (2): 398–407. PMID 2989075. 
  18. dos Santos Silva I, Swerdlow AJ (March 1996). "Sex differences in time trends of colorectal cancer in England and Wales: the possible effect of female hormonal factors". Br. J. Cancer 73 (5): 692–7. PMID 8605109. 
  19. Beral V, Banks E, Reeves G, Appleby P (1999). "Use of HRT and the subsequent risk of cancer". J Epidemiol Biostat 4 (3): 191–210; discussion 210–5. PMID 10695959. 
  20. 20.0 20.1 20.2 National Institute on Alcohol Abuse and Alcoholism Alcohol and Cancer - Alcohol Alert No. 21-1993
  21. PMID 20233826 (PubMed)
    Citation will be completed automatically in a few minutes. Jump the queue or expand by hand
  22. WCRF Food, Nutrition, Physical Activity and the Prevention of Cancer: a Global Perspective
  23. Longnecker MP (1992). "Alcohol consumption in relation to risk of cancers of the breast and large bowel". Alcohol Health Res World 16 (3): 223–9. 
  24. Longnecker MP, Orza MJ, Adams ME, Vioque J, Chalmers TC (July 1990). "A meta-analysis of alcoholic beverage consumption in relation to risk of colorectal cancer". Cancer Causes Control 1 (1): 59–68. doi:10.1007/BF00053184. PMID 2151680. 
  25. Kune S, Kune GA, Watson LF (1987). "Case-control study of alcoholic beverages as etiological factors: the Melbourne Colorectal Cancer Study". Nutr Cancer 9 (1): 43–56. doi:10.1080/01635588709513909. PMID 3808969. 
  26. Potter JD, McMichael AJ (April 1986). "Diet and cancer of the colon and rectum: a case-control study". J. Natl. Cancer Inst. 76 (4): 557–69. PMID 3007842. 
  27. 27.0 27.1 Cho E, Smith-Warner SA, Ritz J, et al. (April 2004). "Alcohol intake and colorectal cancer: a pooled analysis of 8 cohort studies". Ann. Intern. Med. 140 (8): 603–13. PMID 15096331. http://www.annals.org/content/140/8/603.full. 
  28. Boston University "Alcohol May Increase the Risk of Colon Cancer"
  29. Su LJ, Arab L (2004). "Alcohol consumption and risk of colon cancer: evidence from the national health and nutrition examination survey I epidemiologic follow-up study". Nutr Cancer 50 (2): 111–9. doi:10.1207/s15327914nc5002_1. PMID 15623458. 
  30. Anderson JC, Alpern Z, Sethi G, et al. (September 2005). "Prevalence and risk of colorectal neoplasia in consumers of alcohol in a screening population". Am. J. Gastroenterol. 100 (9): 2049–55. doi:10.1111/j.1572-0241.2005.41832.x. PMID 16128951. 
  31. Colorectal Cancer: Who's at Risk? (National Institutes of Health: National Cancer Institute)
  32. National Cancer Institute (NCI) Cancer Trends Progress Report Alcohol Consumption
  33. Brown, Anthony J. Alcohol, tobacco, and male gender up risk of earlier onset colorectal cancer
  34. Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M (1993). "Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis". Nature 363 (6429): 558–61. doi:10.1038/363558a0. PMID 8505985. 
  35. Srikumar Chakravarthi, Baba Krishnan, Malathy Madhavan (1999). "Apoptosis and expression of p53 in colorectal neoplasms". Indian J Med Res 86 (7): 95–102. 
  36. Mehlen P, Fearon ER (August 2004). "Role of the dependence receptor DCC in colorectal cancer pathogenesis". J. Clin. Oncol. 22 (16): 3420–8. doi:10.1200/JCO.2004.02.019. PMID 15310786. 
  37. "Implementing Colorectal Cancer Screening. Workshop Summary". The National Academies Press. 11 December 2008. http://www.iom.edu/CMS/26765/60428.aspx. Retrieved 19 December 2008. 
  38. Weitzel JN (December 1999). "Genetic cancer risk assessment. Putting it all together". Cancer 86 (11 Suppl): 2483–92. doi:10.1002/(SICI)1097-0142(19991201)86:11+<2483::AID-CNCR5>3.0.CO;2-4. PMID 10630174. 
  39. B. Greenwald (2006). "The DNA Stool Test - An Emerging Technology in Colorectal Cancer Screening". http://www.touchalimentarydisease.com/articles.cfm?article_id=6375&level=2. 
  40. http://www.sciencedaily.com/releases/2010/04/100419150831.htm
  41. Pathology atlas
  42. AJCC Cancer Staging Manual (Sixth ed.). Springer-Verlag New York, Inc.. 2002. 
  43. Dukes CE (1932). "The classification of cancer of the rectum". Journal of Pathological Bacteriology 35: 323. doi:10.1002/path.1700350303. 
  44. Winawer SJ, Zauber AG, Ho MN, et al. (December 1993). "Prevention of colorectal cancer by colonoscopic polypectomy. The National Polyp Study Workgroup". N. Engl. J. Med. 329 (27): 1977–81. doi:10.1056/NEJM199312303292701. PMID 8247072. http://content.nejm.org/cgi/pmidlookup?view=short&pmid=8247072&promo=ONFLNS19. 
  45. Cummings, JH; Bingham SA (1998). "Diet and the prevention of cancer". BMJ 317 (7173): 1636–40. PMID 9848907. PMC 1114436. http://bmj.bmjjournals.com/. 
  46. Fuchs, C. S.; Giovannucci, EL; Colditz, GA; Hunter, DJ; Stampfer, MJ; Rosner, B; Speizer, FE; Willett, WC (1999). "Dietary Fiber and the Risk of Colorectal Cancer and Adenoma in Women". New England Journal of Medicine 340 (340): 169–76. doi:10.1056/NEJM199901213400301. PMID 9895396. http://content.nejm.org/cgi/content/full/340/3/169. 
  47. Baron, J. A.; Hunter, DJ; Spiegelman, D; Bergkvist, L; Berrino, F; Van Den Brandt, PA; Buring, JE; Colditz, GA et al. (2005). "Dietary Fiber and Colorectal Cancer: An Ongoing Saga". Journal of the American Medical Association 294 (22): 2904–6. doi:10.1001/jama.294.22.2904. PMID 16352792. 
  48. "Health Effects of Eating Fiber". http://www.hsph.harvard.edu/nutritionsource/fiber.html. 
  49. "Colorectal Cancer Prevention: Chemoprevention Database". http://www.inra.fr/internet/Projets/reseau-nacre/sci-memb/corpet/indexan.html. Retrieved 23 August 2007. 
  50. Agency for Healthcare Research and Quality (5 March 2007). "Task Force Recommends Against Use of Aspirin and Non-Steroidal Anti-Inflammatory Drugs to Prevent Colorectal Cancer". United States Department of Health & Human Services. http://www.ahrq.gov/news/press/pr2007/aspnsaidpr.htm. Retrieved 7 May 2007. 
  51. U.S. Preventive Services Task Force (March 2007). "Routine aspirin or nonsteroidal anti-inflammatory drugs for the primary prevention of colorectal cancer: U.S. Preventive Services Task Force recommendation statement". Ann. Intern. Med. 146 (5): 361–4. PMID 17339621. 
  52. Flossmann E, Rothwell PM (May 2007). "Effect of aspirin on long-term risk of colorectal cancer: consistent evidence from randomised and observational studies". Lancet 369 (9573): 1603–13. doi:10.1016/S0140-6736(07)60747-8. PMID 17499602. http://linkinghub.elsevier.com/retrieve/pii/S0140-6736(07)60747-8. 
  53. Campbell CL, Smyth S, Montalescot G, Steinhubl SR (2007). "Aspirin dose for the prevention of cardiovascular disease: a systematic review". JAMA 297 (18): 2018–24. doi:10.1001/jama.297.18.2018. PMID 17488967. 
  54. Weingarten MA, Zalmanovici A, Yaphe J (2005). "Dietary calcium supplementation for preventing colorectal cancer and adenomatous polyps". Cochrane database of systematic reviews (Online) (3): CD003548. doi:10.1002/14651858.CD003548.pub3. PMID 16034903. 
  55. Wactawski-Wende J, Kotchen JM, Anderson GL, et al. (2006). "Calcium plus vitamin D supplementation and the risk of colorectal cancer". N. Engl. J. Med. 354 (7): 684–96. doi:10.1056/NEJMoa055222. PMID 16481636. 
  56. Lappe JM, Travers-Gustafson D, Davies KM, Recker RR, Heaney RP (2007). "Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial". Am. J. Clin. Nutr. 85 (6): 1586–91. PMID 17556697. http://www.ajcn.org/cgi/content/full/85/6/1586. 
  57. Freedman DM, Looker AC, Chang SC, Graubard BI (2007). "Prospective study of serum vitamin D and cancer mortality in the United States". J. Natl. Cancer Inst. 99 (21): 1594–602. doi:10.1093/jnci/djm204. PMID 17971526. 
  58. Bijlsma MF, Spek CA, Zivkovic D, van de Water S, Rezaee F, Peppelenbosch MP (2006). "Repression of smoothened by patched-dependent (pro-)vitamin D3 secretion". PLoS Biol 4 (8): e232. doi:10.1371/journal.pbio.0040232. PMID 16895439. 
  59. Ades, Steven (2009). "Adjuvant chemotherapy for colon cancer in the elderly". [Oncology]. http://www.cancernetwork.com/display/article/10165/1376671. 
  60. Parker MC, Wilson MS, Menzies D, Sunderland G, Clark DN, Knight AD, Crowe AM; Surgical and Clinical Adhesions Research (SCAR) Group. (2005). "The SCAR-3 study: 5-year adhesion-related readmission risk following lower abdominal surgical procedures.". Colorectal Dis. 7 (6): 551–558. doi:10.1111/j.1463-1318.2005.00857.x. PMID 16232234. http://www3.interscience.wiley.com/journal/118740522/abstract?CRETRY=1&SRETRY=0. Retrieved 5 March 2009. 
  61. [1]
  62. 62.0 62.1 L. van Epps, PhD, Heather (Winter, 2008). "Bittersweet Gene: A gene called KRAS can predict which colorectal cancers will respond to a certain type of treatment—and which will not.". CURE (Cancer Updates, Research and Education). http://www.curetoday.com/index.cfm/fuseaction/article.show/id/2/article_id/943. 
  63. ASCO Releases Provisional Clinical Opinion Recommending Routine KRAS Gene Testing to Guide Treatment for Metastatic Colorectal Cancer
  64. OncoGenetics.Org (July 2009). "FDA updates Vectibix and Erbitux labels with KRAS testing info". OncoGenetics.Org. http://www.oncogenetics.org/web/fda-updates-vectibix-and-erbitux-labels-with-kras-testing-info. Retrieved 20 July 2009. 
  65. V. Shankaran, et al. "Economic implications of Kras testing in metastatic colorectal cancer (mCRC)" ASCO 2009 Gastrointestinal Cancers Symposium, abstract #298; http://www.asco.org/ASCO/Abstracts+&+Virtual+Meeting/Abstracts?&vmview=abst_detail_view&confID=63&abstractID=10759.
  66. http://informahealthcare.com/doi/abs/10.3109/02656730903333958
  67. Mosolits S, Nilsson B, Mellstedt H (June 2005). "Towards therapeutic vaccines for colorectal carcinoma: a review of clinical trials". Expert Rev Vaccines 4 (3): 329–50. doi:10.1586/14760584.4.3.329. PMID 16026248. http://www.future-drugs.com/doi/abs/10.1586/14760584.4.3.329?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dncbi.nlm.nih.gov. 
  68. Wheldon, Julie. Vaccine for kidney and bowel cancers 'within three years' The Daily Mail 13 November 2006
  69. Oxford BioMedica
  70. Vaccine Works With Chemotherapy in Colorectal Cancer (Reuters) 13 August 2007
  71. [2]
  72. Simmonds PC, Primrose JN, Colquitt JL, Garden OJ, Poston GJ, Rees M (April 2006). "Surgical resection of hepatic metastases from colorectal cancer: a systematic review of published studies". Br. J. Cancer 94 (7): 982–99. doi:10.1038/sj.bjc.6603033. PMID 16538219. 
  73. Chan AT, Giovannucci EL, Meyerhardt JA, Schernhammer ES, Curhan GC, Fuchs CS (August 2005). "Long-term use of aspirin and nonsteroidal anti-inflammatory drugs and risk of colorectal cancer". JAMA 294 (8): 914–23. doi:10.1001/jama.294.8.914. PMID 16118381. PMC 1550973. http://jama.ama-assn.org/cgi/pmidlookup?view=long&pmid=16118381. 
  74. Chan AT, Ogino S, Fuchs CS (August 2009). "Aspirin use and survival after diagnosis of colorectal cancer". JAMA 302 (6): 649–58. doi:10.1001/jama.2009.1112. PMID 19671906. PMC 2848289. http://jama.ama-assn.org/cgi/pmidlookup?view=long&pmid=19671906. 
  75. Jeffrey A. Gordon, M.D. Aspirin Use as Treatment in Colorectal Cancer: Teaching an Old Dog New Tricks. Doctors Lounge Website. Available at: http://www.doctorslounge.com/index.php/articles/page/298. Accessed September 20, 2009.
  76. Matsumoto S, Hayashi A, Kobayashi K, Imaeda Y, Umemoto S (February 2004). Cimetidine blocking of E-selectin expression inhibits sialyl Lewis-X-positive cancer cells from adhering to vascular endothelium. http://www.cancerprev.org/Meetings/2004/Symposia/1094/138. 
  77. Matsumoto S, Imaeda Y, Umemoto S, Kobayashi K, Okamoto T (january 2002). "Cimetidine increases survival of colorectal cancer patients with high levels of sialyl Lewis-X and sialyl Lewis-A epitope expression on tumour cells.". British Journal of Cancer 86 (6): 161–167. doi:10.1038/sj.bjc.6600048. PMID 19671906. PMC 2848289. http://www.nature.com/bjc/journal/v86/n2/abs/6600048a.html. 
  78. Yoshimatsu K, Ishibashi K, Hashimoto M, Umehara A, Yokomizo H, Yoshida K, Fujimoto T, Iwasaki K, Ogawa K (October 2003). "Effect of cimetidine with chemotherapy on stage IV colorectal cancer [Article in Japanese"]. Gan to Kagaku Ryoho. 30 (11): 1794–7. PMID 14619522. http://www.ncbi.nlm.nih.gov/pubmed/14619522. 
  79. 79.0 79.1 NCCN Clinical Practice Guidelines in Oncology - Colon Cancer (version 1, 2008: September 19, 2007).
  80. 80.0 80.1 Desch CE, Benson AB 3rd, Somerfield MR, et al.; American Society of Clinical Oncology (2005). "Colorectal cancer surveillance: 2005 update of an American Society of Clinical Oncology practice guideline" (PDF). J Clin Oncol 23 (33): 8512–9. doi:10.1200/JCO.2005.04.0063. PMID 16260687. http://jco.ascopubs.org/cgi/reprint/JCO.2005.04.0063v1.pdf. 
  81. Jeffery M, Hickey BE, Hider PN (2002). "Follow-up strategies for patients treated for non-metastatic colorectal cancer". Cochrane Database Syst Rev (1): CD002200. doi:10.1002/14651858.CD002200. CD002200. PMID 11869629. http://mrw.interscience.wiley.com/cochrane/clsysrev/articles/CD002200/frame.html. 
  82. Renehan AG, Egger M, Saunders MP, O'Dwyer ST (2002). "Impact on survival of intensive follow up after curative resection for colorectal cancer: systematic review and meta-analysis of randomised trials". BMJ 324 (7341): 831–8. doi:10.1136/bmj.324.7341.813. PMID 11934773. PMC 100789. http://www.bmj.com/cgi/reprint/324/7341/813. 
  83. Figueredo A, Rumble RB, Maroun J, et al.; Gastrointestinal Cancer Disease Site Group of Cancer Care Ontario's Program in Evidence-based Care. (2003). "Follow-up of patients with curatively resected colorectal cancer: a practice guideline.". BMC Cancer 3: 26. doi:10.1186/1471-2407-3-26. PMID 14529575. 
  84. "WHO Disease and injury country estimates". World Health Organization. 2009. http://www.who.int/healthinfo/global_burden_disease/estimates_country/en/index.html. Retrieved Nov. 11, 2009. 
  85. http://www.abs-cbnnews.com/storypage.aspx?StoryID=112887
  86. "Pope John Paul II". ABC News Online. http://www.abc.net.au/news/indepth/pope/timeline.htm. 
  87. "Reagan turns 90". BBC News: Americas. 6 February 2001. http://news.bbc.co.uk/2/hi/americas/1156513.stm. 
  88. Daily Mail
  89. 'Price Is Right's' Rod Roddy Dies at CBS News
  90. van Leeuwen I, Byrne H, Jensen O, King J (2006). "Crypt dynamics and colorectal cancer: advances in mathematical modelling.". Cell Prolif 39 (3): 157–81. doi:10.1111/j.1365-2184.2006.00378.x. PMID 16671995. http://www.maths.nottingham.ac.uk/personal/pmzivl/LeeuByrn2006.html. 
  91. Integrative Biology - For a comprehensive overview of current computational approaches on colorectal cancer.

External links