Carboxylic acid

Structure of a carboxylic acid
Carboxylate ion
The 3D structure of the carboxyl group

Carboxylic acids are organic acids characterized by the presence of at least one carboxyl group. [1] The general formula of a carboxylic acid is R-COOH, where R is some monovalent functional group.

A carboxyl group (or carboxy) is a functional group consisting of a carbonyl and a hydroxyl, which has the formula -C(=O)OH, usually written as -COOH or -CO2H.

Carboxylic acids are Brønsted-Lowry acids, they are proton donors. They are the most common type of organic acid. Among the simplest examples are the formic acid H-COOH, that occurs in ants, and acetic acid H3C-COOH group, that gives vinegar its sour taste. Acids with two or more carboxyl groups are called dicarboxylic, tricarboxylic, etc. The simplest dicarboxylic example is oxalic acid (COOH)2, which is just two connected carboxyls. Mellitic acid is an example of a hexacarboxylic acid. Other important natural examples are citric acid (in lemons) and tartaric acid (in tamarinds).

Salts and esters of carboxylic acids are called carboxylates. When a carboxyl group is deprotonated, its conjugate base, a carboxylate anion is formed. Carboxylate ions are resonance stabilized and this increased stability make carboxylic acids more acidic than alcohols.

Contents

Physical properties

Solubility

Carboxylic acid dimers

Carboxylic acids are polar. Because they are both hydrogen-bond acceptors (the carbonyl) and hydrogen-bond donors (the hydroxyl), they also participate in hydrogen bonding. Together the hydroxyl and carbonyl group forms the functional group carboxyl. Carboxylic acids usually exist as dimeric pairs in nonpolar media due to their tendency to “self-associate.” Smaller carboxylic acids (1 to 5 carbons) are soluble with water, whereas higher carboxylic acids are less soluble due to the increasing hydrophobic nature of the alkyl chain. These longer chain acids tend to be rather soluble in less-polar solvents such as ethers and alcohols.[2]

Boiling points

Carboxylic acids tend to have higher boiling points than water, not only because of their increased surface area, but because of their tendency to form stabilised dimers. Carboxylic acids tend to evaporate or boil as these dimers. For boiling to occur, either the dimer bonds must be broken, or the entire dimer arrangement must be vaporised, both of which increase enthalpy of vaporisation requirements significantly.

Acidity

Carboxylic acids are typically weak acids, meaning that they only partially dissociate into H+ cations and RCOO anions in neutral aqueous solution. For example, at room temperature, only 0.02 % of all acetic acid molecules are dissociated. Electronegative substituents give stronger acids.

Carboxylic Acids pKa
Formic acid (HCO2H) 3.77
Acetic acid (CH3COOH) 4.76
Chloroacetic acid (CH2ClCO2H) 2.86
Dichloroacetic acid (CHCl2CO2H) 1.29
Trichloroacetic acid (CCl3CO2H) 0.65
Trifluoroacetic acid (CF3CO2H) 0.5
Oxalic acid (HO2CCO2H) 1.27
Benzoic acid (C6H5CO2H) 4.2

Deprotonation of a carboxylic acid gives a carboxylate anion, which is resonance stabilized because the negative charge is shared (delocalized) between the two oxygen atoms increasing its stability. Each of the carbon-oxygen bonds in a carboxylate anion has partial double-bond character.

Odor

Carboxylic acids often have strong odors, especially the volatile derivatives. Most common are acetic acid (vinegar) and butyric acid (rancid butter). On the other hand, esters of carboxylic acids tend to have pleasant odors and many are used in perfumes.

Nomenclature

The simplest series of carboxylic acids are the alkanoic acids, RCOOH, where R is a hydrogen or an alkyl group. Compounds may also have two or more carboxylic acid groups per molecule. The mono- and dicarboxylic acids have trivial names.

Carboxylic acid radical

In the absence of an additional substituent (usually indicated by "R"), the radical ·COOH group has only a separate fleeting existence.[3] The acid dissociation constant of ·COOH has been measured using electron paramagnetic resonance spectrocopy.[4]

Characterization

Carboxylic acids are most readily identified as such by infrared spectroscopy. They exhibit a sharp band associated with vibration of the C-O vibration bond (νC=O) between 1680 and 1725 cm−1. A characteristic νO-H band appears as a broad peak in the 2500 to 3000 cm−1 region.[2] By 1H NMR spectrometry, the hydroxyl hydrogen appears in the 10-13 ppm region, although it is often either broadened or not observed owing to exchange with traces of water.

Occurrence and applications

Many carboxylic acids are produced industrially on a large scale. They are also pervasive in nature. Esters of fatty acids are the main components of lipids and polyamides of aminocarboxylic acids are the main components of proteins.

Carboxylic acids are used in the production of polymers, pharmaceuticals, solvents, and food additives. Industrially important carboxylic acids include acetic acid (component of vinegar, precursor to solvents and coatings), acrylic and methacrylic acids (precursors to polymers, adhesives), adipic acid (polymers), citric acid (beverages), ethylenediaminetetraacetic acid (chelating agent), fatty acids (coatings), maleic acid (polymers), propionic acid (food preservative), terephthalic acid (polymers).

Synthesis

Industrial routes

Industrial routes to carboxylic acids generally differ from those used on smaller scale because they require specialized equipment.

HCCH + CO + H2O → CH2=CHCO2H

Laboratory methods

Preparative methods for small scale reactions for research or for production of fine chemicals often employ expensive consumable reagents.

RLi + CO2 RCO2Li
RCO2Li + HCl RCO2H + LiCl

Less-common reactions

Many reactions afford carboxylic acids but are used only in specific cases or are mainly of academic interest:

Reactions

The most widely practiced reactions convert carboxylic acids into esters, amides, carboxylate salts, acid chlorides, and alcohols. Carboxylic acids react with bases to form carboxylate salts, in which the hydrogen of the hydroxyl (-OH) group is replaced with a metal cation. Thus, acetic acid found in vinegar reacts with sodium bicarbonate (baking soda) to form sodium acetate, carbon dioxide, and water:

CH3COOH + NaHCO3 → CH3COONa+ + CO2 + H2O

Carboxylic acids also react with alcohols to give esters. This process is heavily used in the production of polyesters. Similarly carboxylic acids are converted into amides, but this conversion typically does not occur by direct reaction of the carboxylic acid and the amine. Instead esters are typical precursors to amides. The conversion of amino acids into peptides is a major biochemical process that requires ATP.

The hydroxyl group on carboxylic acids may be replaced with a chlorine atom using thionyl chloride to give acyl chlorides. In nature, carboxylic acids are converted to thioesters.

The carboxylic acid can be reduced to the alcohol by hydrogenation or using stoichiometric hydride reducing agents such as lithium aluminium hydride.

Specialized reactions

Nomenclature and examples

The carboxylate anion R-COO is usually named with the suffix -ate, so acetic acid, for example, becomes acetate ion. In IUPAC nomenclature, carboxylic acids have an -oic acid suffix (e.g., octadecanoic acid). In common nomenclature, the suffix is usually -ic acid (e.g., stearic acid).

Straight-Chained, Saturated Carboxylic Acids
Carbon atoms Common name IUPAC name Chemical formula Common location or use
1 Formic acid Methanoic acid HCOOH Insect stings
2 Acetic acid Ethanoic acid CH3COOH Vinegar
3 Propionic acid Propanoic acid CH3CH2COOH
4 Butyric acid Butanoic acid CH3(CH2)2COOH Rancid butter
5 Valeric acid Pentanoic acid CH3(CH2)3COOH Valerian
6 Caproic acid Hexanoic acid CH3(CH2)4COOH Goat fat
7 Enanthic acid Heptanoic acid CH3(CH2)5COOH
8 Caprylic acid Octanoic acid CH3(CH2)6COOH Coconuts and breast milk
9 Pelargonic acid Nonanoic acid CH3(CH2)7COOH Pelargonium
10 Capric acid Decanoic acid CH3(CH2)8COOH
12 Lauric acid Dodecanoic acid CH3(CH2)10COOH Coconut oil and hand wash soaps.
14 Myristic acid Tetradecanoic acid CH3(CH2)12COOH Nutmeg
16 Palmitic acid Hexadecanoic acid CH3(CH2)14COOH Palm oil
18 Stearic acid Octadecanoic acid CH3(CH2)16COOH Chocolate, waxes, soaps, and oils
20 Arachidic acid Eicosanoic acid CH3(CH2)18COOH Peanut oil
Other carboxylic acids
Compound class Members
unsaturated monocarboxylic acids acrylic acid (2-propenoic acid) – CH2=CHCOOH, used in polymer synthesis
Fatty acids medium to long-chain saturated and unsaturated monocarboxylic acids, with even number of carbons examples docosahexaenoic acid and eicosapentaenoic acid (nutritional supplements)
Amino acids the building blocks of proteins
Keto acids acids of biochemical significance that contain a ketone group e.g. acetoacetic acid and pyruvic acid
Aromatic carboxylic acids benzoic acid, the sodium salt of benzoic acid is used as a food preservative , salicylic acid – a beta hydroxy type found in many skin care products
Dicarboxylic acids containing two carboxyl groups examples adipic acid the monomer used to produce nylon and aldaric acid – a family of sugar acids
Tricarboxylic acids containing three carboxyl groups example citric acid – found in citrus fruits and isocitric acid
Alpha hydroxy acids containing a hydroxy group example glyceric acid, glycolic acid and lactic acid (2-hydroxypropanoic acid) – found in sour milk tartaric acid - found in wine

See also

References

  1. Compendium of Chemical Terminology, carboxylic acids, accessed 15 Jan 2007.
  2. 2.0 2.1 R.T. Morrison, R.N. Boyd. Organic Chemistry, 6th Ed. (1992) ISBN 0-13-643669-2.
  3. Milligan, D. E.; Jacox, M. E. (1971). "Infrared Spectrum and Structure of Intermediates in Reaction of OH with CO". Journal of Chemical Physics 54 (3): 927–942. doi:10.1063/1.1675022. 
  4. The value is pKa = -0.2 ± 0.1.Jeevarajan, A. S.; Carmichael, I.; Fessenden, R. W. (1990). "ESR Measurement of the pKa of Carboxyl Radical and Ab Initio Calculation of the C-13 Hyperfine Constant". Journal of Physical Chemistry 94 (4): 1372–1376. doi:10.1021/j100367a033. 
  5. Wilhelm Riemenschneider “Carboxylic Acids, Aliphatic” in Ullmann's Encyclopedia of Industrial Chemistry, 2002, Wiley-VCH, Weinheim. doi: 10.1002/14356007.a05_235.
  6. Organic Syntheses, Coll. Vol. 3, p.234 (1955); Vol. 24, p.38 (1944) Link
  7. Organic Syntheses, Coll. Vol. 3, p.237 (1955); Vol. 24, p.41 (1944) Link.

External links