Biophysics
Biophysics is an interdisciplinary science that uses the methods of physics and physical chemistry to study biological systems.[1] Studies included under the branches of biophysics span all levels of biological organization, from the molecular scale to whole organisms and ecosystems. Biophysical research shares significant overlap with biochemistry, nanotechnology, bioengineering, agrophysics and systems biology.
Molecular biophysics typically addresses biological questions that are similar to those in biochemistry and molecular biology, but the questions are approached quantitatively. Scientists in this field conduct research concerned with understanding the interactions between the various systems of a cell, including the interactions between DNA, RNA and protein biosynthesis, as well as how these interactions are regulated. A great variety of techniques are used to answer these questions.
Fluorescent imaging techniques, as well as electron microscopy, x-ray crystallography, NMR spectroscopy and atomic force microscopy (AFM) are often used to visualize structures of biological significance. Conformational change in structure can be measured using techniques such as dual polarisation interferometry and circular dichroism. Direct manipulation of molecules using optical tweezers or AFM can also be used to monitor biological events where forces and distances are at the nanoscale. Molecular biophysicists often consider complex biological events as systems of interacting units which can be understood through statistical mechanics, thermodynamics and chemical kinetics. By drawing knowledge and experimental techniques from a wide variety of disciplines, biophysicists are often able to directly observe, model or even manipulate the structures and interactions of individual molecules or complexes of molecules.
In addition to traditional (i.e. molecular and cellular) biophysical topics like structural biology or enzyme kinetics, modern biophysics encompasses an extraordinarily broad range of research. It is becoming increasingly common for biophysicists to apply the models and experimental techniques derived from physics, as well as mathematics and statistics, to larger systems such as tissues, organs, populations and ecosystems.
Focus as a subfield
Biophysics often does not have university-level departments of its own, but has presence as groups across departments within the fields of molecular biology, biochemistry, chemistry, computer science, mathematics, medicine, pharmacology, physiology, physics, and neuroscience. What follows is a list of examples of how each department applies its efforts toward the study of biophysics. This list is hardly all inclusive. Nor does each subject of study belong exclusively to any particular department. Each academic institution makes its own rules and there is much overlap between departments.
- Biology and molecular biology - Almost all forms of biophysics efforts are included in some biology department somewhere. To include some: gene regulation, single protein dynamics, bioenergetics, patch clamping, biomechanics.
- Structural biology - Ångstrom-resolution structures of proteins, nucleic acids, lipids, carbohydrates, and complexes thereof.
- Biochemistry and chemistry - biomolecular structure, siRNA, nucleic acid structure, structure-activity relationships.
- Computer science - Neural networks, biomolecular and drug databases.
- Computational chemistry - molecular dynamics simulation, molecular docking, quantum chemistry
- Bioinformatics - sequence alignment, structural alignment, protein structure prediction
- Mathematics - graph/network theory, population modeling, dynamical systems, phylogenetics.
- Medicine and neuroscience - tackling neural networks experimentally (brain slicing) as well as theoretically (computer models), membrane permitivity, gene therapy, understanding tumors.
- Pharmacology and physiology - channel biology, biomolecular interactions, cellular membranes, polyketides.
- Physics - biomolecular free energy, stochastic processes, covering dynamics.
- Quantum biophysics involves quantum information processing of coherent states, entanglement between coherent protons and transcriptase components, and replication of decohered isomers to yield time-dependent base substitutions. These studies imply applications in quantum computing.
- Agronomy Agriculture
Many biophysical techniques are unique to this field. Research efforts in biophysics are often initiated by scientists who were traditional physicists, chemists, and biologists by training.
See also
- Biophysical Society
- List of biophysics topics
- List of biophysicists
- Biophysical chemistry
- Medical biophysics
- Membrane biophysics
- Molecular biophysics
- Important publications in biophysics
- What is Biophysics Brochure
Notes
References
- Perutz MF (1962). Proteins and Nucleic Acids: Structure and Function. Amsterdam: Elsevier. ASIN B000TS8P4G.
- Perutz MF (1969). "The haemoglobin molecule". Proceedings of the Royal Society of London. Series B 173 (31): 113–40. PMID 4389425
- Dogonadze RR, Urushadze ZD (1971). "Semi-Classical Method of Calculation of Rates of Chemical Reactions Proceeding in Polar Liquids". J Electroanal Chem 32: 235–245.
- Volkenshtein M.V., Dogonadze R.R., Madumarov A.K., Urushadze Z.D. and Kharkats Yu.I. Theory of Enzyme Catalysis.- Molekuliarnaya Biologia (Moscow), 6, 1972, pp. 431–439 (In Russian, English summary)
- Rodney M. J. Cotterill (2002). Biophysics : An Introduction. Wiley. ISBN 978-0471485384.
- Sneppen K, Zocchi G (2005-10-17). Physics in Molecular Biology (1 ed.). Cambridge University Press. ISBN 0-521-84419-3.
- Glaser, Roland (2004-11-23). Biophysics: An Introduction (Corrected ed.). Springer. ISBN 3-540-67088-2.
- Hobbie RK, Roth BJ (2006). Intermediate Physics for Medicine and Biology (4th ed.). Springer. ISBN 978-0387309422. http://personalwebs.oakland.edu/~roth/hobbie.htm.
- Cooper WG (2009). "Evidence for transcriptase quantum processing implies entanglement and decoherence of superposition proton states". BioSystems 97: 73–89.
- Cooper WG (2009). "Necessity of quantum coherence to account for the spectrum of time-dependent mutations exhibited by bacteriophage T4". Biochem. Genet. 47: 892.
External links