Avalanche

This article refers to the natural event. For other uses, see Avalanche (disambiguation)
A powder snow avalanche in the Himalayas near Mount Everest.
The toe of an avalanche in Alaska's Kenai Fjords.
A powder snow avalanche

An avalanche is a rapid flow of snow down a slope, from either natural triggers or human activity. Typically occurring in mountainous terrain, an avalanche can mix air and water with the descending snow. Powerful avalanches have the capability to entrain ice, rocks, trees, and other material on the slope. Avalanches are primarily composed of flowing snow, and are distinct from mudslides, rock slides, and serac collapses on an icefall. In mountainous terrain avalanches are among the most serious objective hazards to life and property, with their destructive capability resulting from their potential to carry an enormous mass of snow rapidly over large distances.

Avalanches are classified by their morphological characteristics, and are rated by either their destructive potential, or the mass of the downward flowing snow. Some of the morphological characteristics used to classify avalanches include the type of snow involved, the nature of the failure, the sliding surface, the propagation mechanism of the failure, the trigger of the avalanche, the slope angle, direction, and elevation. Avalanche size, mass, and destructive potential are rated on a logarithmic scale, typically made up of 4 to 7 categories, with the precise definition of the categories depending on the observation system or forecast region.

Contents

Formation and Occurrences

Avalanches only occur when the stress on the snow exceeds the shear, ductile, and tensile strength either within the snow pack or at the contact of the base of the snow pack with the ground or rock surface. A number of the forces acting on a snow pack can be readily determined, for example the weight of the snow is straightforward to calculate, however it is very difficult to know the shear, ductile, and tensile strength within the snow pack or with the ground. These strengths vary with the type of snow crystal and the bonding between them. The thermo-mechanical properties of the snow crystals in turn depend on the local conditions they have experienced such as temperature and humidity. One of the aims of avalanche research is to develop and validate computer models that can describe the time evolution of snow packs and predict the shear yield stress. A complicating factor is the large spatial variability that is typical.

Classification and Terminology

All avalanches share common elements: a trigger which causes the avalanche, a start zone from which the avalanche originates, a slide path along which the avalanche flows, a run out where the avalanche comes to rest, and a debris deposit which is the accumulated mass of the avalanched snow once it has come to rest. As well avalanches have a failure layer that propagates the failure and the bed surface along which the snow initially slides, in most avalanches the failure layer and the bed surface are the same. Additionally slab avalanches have a crown fracture at the top of the start zone, flank fractures on the sides of the start zones, and a shallow staunch fracture at the bottom of the start zone. The crown and flank fractures are vertical walls in the snow delineating the snow that was entrained in the avalanche from the snow that remained on the slope.

The nature of the failure of the snow pack is used to morphologically classify the avalanche. Slab avalanches are generated when an additional load causes a brittle failure of a slab that is bridging a weak snow layer; this failure is propagated through fracture formation in the bridging slab. Loose snow, point release, and isothermal avalanches are generated when a stress causes a shear failure in a weak interface, either within the snow pack, or at the base. When the failure occurs at the base they are known as full depth avalanches. Spin drift avalanches occur when wind lifted snow is funneled into a steep drainage from above the drainage.

Loose snow avalanches occur in freshly fallen snow that has a lower density and are most common on steeper terrain. In fresh, loose snow the release is usually at a point and the avalanche then gradually widens down the slope as more snow is entrained, usually forming a teardrop appearance. This is in contrast to a slab avalanche.

Slab avalanches account for around 90% of avalanche-related fatalities, and occur when there is a strong, cohesive layer of snow known as a slab. These are usually formed when falling snow is deposited by the wind on a lee slope, or when loose ground snow is transported elsewhere. When there is a failure in a weak layer, a fracture very rapidly propagates so that a large area, that can be hundreds of meters in extent and several meters thick, starts moving almost instantaneously.

A third starting type is a wet snow avalanche or isothermal avalanche, which occurs when the snow pack becomes saturated by water. These tend to also start and spread out from a point. When the percentage of water is very high they are known as slush flows and they can move on very shallow slopes.

Among the largest and most powerful of avalanches, powder snow avalanches can exceed speeds of 300 km/h, and masses of 10,000,000 tonnes; their flows can travel long distances along flat valley bottoms and even up hill for short distances. A powder snow avalanche is a powder cloud that forms when an avalanche accelerates over an abrupt change in slope, such as a cliff band, causing the snow to mix with air. This turbulent suspension of snow particles then flows as a gravity current.

Terrain

In steep avalanche-prone terrain, traveling on ridges is generally safer than traversing the slopes.

Terrain affects avalanche occurrence and development through three factors: First, terrain affects the evolution of the snow pack by determining the meteorological exposure of the snow pack. Second, terrain affects the stability of the snow pack, through the geometry and ground composition of the slope. Third, the down slope features of the terrain affects the path and consequences of a flowing avalanche.

For a slope to generate an avalanche it must be simultaneously capable of retaining snow, and allowing snow to accelerate once set in motion. The angle of the slope that can hold snow depends on the ductile and shear strength of the snow, which is determined by the temperature and moisture content of the snow. Drier and colder snow, with lower ductile and shear strength, will only bond to lower angle slopes; while wet and warm snow, with higher ductile and shear strength, can bound to very steep surfaces. In particular, in coastal mountains, such as the Cordillera del Paine region of Patagonia, deep snow packs collect on vertical, and overhanging, rock faces. The angle of slope that can allow moving snow to accelerate depends on the shear strength of the snow. Snow that has been water saturated to the point of slush can accelerate on shallow angled terrain; while a cohesive snow pack will not accelerate on very steep slopes, such as the typical snow pack in the Chugach Mountains of Alaska.

A cornice of snow about to fall. Cracks in the snow are visible in area (1). Area (3) fell soon after this picture was taken, leaving area (2) as the new edge.

The snow pack on slopes with sunny exposures are strongly influenced by sunshine. Daily cycles of mild thawing and refreezing can stabilize the snow pack by promoting settlement, strong freeze thaw cycles will result in the formation of surface crusts during the night, and the formation of unstable isothermal snow during the day. Slopes in the lee of a ridge or other wind obstacle accumulate more snow and are more likely to include pockets of abnormally deep snow, wind slabs, and cornices, all of which, when disturbed, may trigger an avalanche. Conversely a windward slope will be bare of snow.

The start zone of an avalanche must be steep enough to allow snow to accelerate once set in motion, additionally convex slopes are less stable than concave slopes, because of the disparity between the tensile strength of snow layers and their compressive strength. The composition and structure of the ground surface beneath the snow pack influences the stability of the snow pack, either being a source of strength or weakness. Thickly forested areas are unlikely to be avalanche paths, however boulders and sparsely distributed vegetation can create weak areas deep within the snow pack, through the formation of strong temperature gradients. Full-depth avalanches (avalanches that sweep a slope virtually clean of snow cover) are more common on slopes with smooth ground cover, such as grass or rock slabs.

Avalanches follow drainages down slope, frequently sharing drainage features with summertime watersheds. At and below tree line these drainages are well defined by vegetation boundaries where the avalanches have prevented the growth of large vegetation. Engineered drainages, such as the avalanche dam on Mount Stephen in Kicking Horse Pass, have been constructed to protect people and property, by redirecting the flow of avalanches. Deep debris deposits from avalanches will collect in catchments at the terminus of a run out, such as gullies and river beds, .

Slopes flatter than 25 degrees or steeper than 60 degrees typically have a lower incidence of avalanche involvement, likewise slopes with windward and sunny exposure have a lower incidence of avalanche involvement . Human triggered avalanches have the greatest incidence when the snow's angle of repose is between 35 and 45 degrees; the critical angle, the angle at which the human incidence of avalanches is greatest, is 38 degrees. But when the incidence of human triggered avalanches are normalized by the rates of recreational use hazard increases uniformly with slope angle, and no significant difference in hazard for a given exposure direction can be found.[1] The rule of thumb is: A slope that is flat enough to hold snow but steep enough to ski has the potential to generate an avalanche, regardless of the angle.

Snow structure and characteristics

After surface hoarfrost becomes buried by later snowfall, the buried hoar layer can be a weak layer upon which upper layers can slide.

The snow pack is composed of deposition layers of snow that are accumulated over time. The deposition layers are stratified parallel to the ground surface on which the snow falls. Each deposition layer indicates a distinct meteorological condition during which the snow was accumulated. Once deposited a snow layer will continue to evolve and develop under the influence of the meteorological conditions that prevail after deposition.

For an avalanche to occur, it is necessary that a snow pack have a weak layer (or instability) below a slab of cohesive snow. In practice the mechanical and structural determinants of snow pack stability are not directly observable outside of laboratories, thus the more easily observed properties of the snow layers (e.g. penetration resistance, grain size, grain type, temperature) are used as proxy measurements of the mechanical properties of the snow (e.g. tensile strength, friction coefficients, shear strength, and ductile strength). This results in two principal sources of uncertainty in determining snow pack stability based on snow structure: First, both the factors influencing snow stability and the specific characteristics of the snow pack vary widely within small areas and time scales, resulting in an inability to extrapolate point observations of snow layers. Second, the understanding of the relationship between the readily observable snow pack characteristics and the snow pack's critical mechanical properties has not been completely developed.

While the deterministic relationship between snow pack characteristics and snow pack stability is still a matter of ongoing scientific study, there is a growing empirical understanding of the snow composition and deposition characteristics that influence the likelihood of an avalanche. Observation and experience has shown that newly fallen snow requires time to bond with the snow layers beneath it, especially if the new snow falls during very cold and dry conditions. Shallower snow, that can lie above or around boulders, plants, and other discontinuities in the slope, will weaken from the presence of a stronger temperature gradient. Larger and more angular snow crystals are an indicator of weaker bonds within the snow pack, because the sintering process that forms bonds within the snow pack will also cause the snow crystals to become smaller and rounder. Consolidated snow is less likely to slough than either loose powdery layers or wet isothermal snow; however, consolidated snow is a necessary condition for the occurrence of slab avalanches, and will mask persistent instabilities within a snow pack. The empirical understanding of the factors influencing snow stability only places broad predictive bounds on the stability of the snow, consequently a conservative use of avalanche terrain, well within the recommended guidelines of the local avalanche forecasts and bulletins, is always recommended.

Weather

After digging a snow pit, it is possible to evaluate the snowpack for unstable layers. In this picture, snow from a weak layer has been easily scraped away by hand, leaving a horizontal line in the wall of the pit.

Avalanches can only occur in a standing snow pack. Typically winter seasons and high altitudes have weather that is sufficiently unsettled and cold enough for precipitated snow to accumulate into a snow pack. The evolution of the snow pack is critically sensitive to small variations within the narrow range of meteorological conditions that allow for the accumulation of snow into a snow pack. Among the critical factors controlling snow pack evolution are: heating by the sun, radiational cooling, vertical temperature gradients in standing snow, snowfall amounts, and snow types. Generally, mild winter weather will promote the settlement and stabilization of the snow pack; and conversely very cold, windy, or hot weather will weaken the snow pack.

At temperatures close to the freezing point of water, or during times of moderate solar radiation, a gentle freeze-thaw cycle will take place. The melting and refreezing of water in the snow strengthens the snow pack during the freezing phase and weakens it during the thawing phase. A rapid rise in temperature, to a point significantly above the freezing point of water, may cause a slope to avalanche, especially in the spring.

Persistent cold temperatures can either prevent the snow from stabilizing or destabilize a snow pack. Cold air temperatures on the snow surface produce a temperature gradient in the snow, because the ground temperature at the base of the snow pack is close to freezing; unless the snow pack is standing on glaciated terrain, in which case the temperature at the base of the snow pack can be significantly below freezing. When a temperature gradient greater than 10oC change per vertical meter of snow is sustained for more than a day depth hoar will form in the snow pack, through the thermal transport of moisture away from the depth hoar along the temperature gradient, from bottom to top. This layer of depth hoar becomes a persistent weakness in the snow pack, characterized by faceted grains forming either above or below crusts and slabs. When a slab lying on top of this persistent weakness is loaded by a force above the tensile and ductile strength of the slab and the shear strength of the persistent weak layer, the persistent weak layer will fail and generate an avalanche.

Any wind stronger than a light breeze can contribute to a rapid accumulation of snow on sheltered slopes downwind. Wind pressure at a favorable angle can stabilize other slopes. A "wind slab" is a particularly fragile and brittle structure which is heavily loaded and poorly bonded to its underlayment. Even on a clear day, wind can quickly shift the snow load on a slope. This can occur in two ways: by top-loading and by cross-loading. Top-loading occurs when wind deposits snow perpendicular to the fall-line on a slope; cross-loading occurs when wind deposits snow parallel to the fall-line. When a wind blows over the top of a mountain, the leeward, or downwind, side of the mountain experiences top-loading, from the top to the bottom of that lee slope. When the wind blows across a ridge that leads up the mountain, the leeward side of the ridge is subject to cross-loading. Cross-loaded wind-slabs are usually difficult to identify visually.

Snowstorms and rainstorms are important contributors to avalanche danger. Heavy snowfall will cause instability in the existing snow pack, both because of the additional weight and because the new snow has insufficient time to bond to underlying snow layers. Rain has a similar effect. In the short-term, rain causes instability because, like a heavy snowfall, it imposes an additional load on the snow pack; and, once rainwater seeps down through the snow, it acts as a lubricant, reducing the natural friction between snow layers that holds the snow pack together. Most avalanches happen during or soon after a storm.

Daytime exposure to sunlight will rapidly destabilize the upper layers of a snow pack. Sunlight reduces the sintering, or necking, between snow grains. During clear nights, the snow pack can strengthen, or tighten, through the process of long-wave radiative cooling. When the night air is significantly cooler than the snow pack, the heat stored in the snow is re-radiated into the atmosphere.

Triggers

Avalanches are always caused by an external stress on the snow pack; they are not random or spontaneous events. Natural triggers of avalanches include additional precipitation, radiative and convective heating, rock fall, ice fall, and other sudden impacts; however, even a snow pack held at a constant temperature, pressure, and humidity will evolve over time and develop stresses, often from the downslope creep of the snow pack. Human triggers of avalanches include skiers, snowmobiles, and controlled explosive work. The triggering stress load can be either localized to the failure point, or remote. Localized triggers of avalanches are typified by point releases from solar heated rocks. Remotely triggered avalanches occur when a tensile stress wave is transmitted through the slab to the start zone, once the stress wave reaches the start zone a fracture initiates and propagates the failure. Of exceptional note is that avalanches can not only entrain additional snow within the failing slab, but can also, given the sufficient accumulation of overburden due to a smaller avalanche, step down and trigger deeper slab instabilities that would be more resilient against smaller stresses. The triggering of avalanches is an example of critical phenomenon.

Dynamics

When an avalanche occurs, as the snow slides down the slope any slab present begins to fragment into increasingly smaller tumbling fragments. If the fragments become small enough the avalanche takes on the characteristics of a fluid. When sufficiently fine particles are present they can become airborne and, given a sufficient quantity of airborne snow, this portion of the avalanche can become separated from the bulk of the avalanche and travel a greater distance as a powder snow avalanche.[2] Scientific studies using radar, following the 1999 Galtür avalanche disaster, confirmed suspicions that a saltation layer forms between the surface and the airborne components of an avalanche, which can also separate from the bulk of the avalanche.[3]

Driving a (non-airborne) avalanche is the component of the avalanche's weight parallel to the slope; as the avalanche progresses any unstable snow in its path will tend to become incorporated, so increasing the overall weight. This force will increase as the steepness of the slope increases, and diminish as the slope flattens. Resisting this are a number of components that are thought to interact with each other: the friction between the avalanche and the surface beneath; friction between the air and snow within the fluid; fluid-dynamic drag at the leading edge of the avalanche; shear resistance between the avalanche and the air through which it is passing, and shear resistance between the fragments within the avalanche itself. An avalanche will continue to accelerate until the resistance exceeds the forward force.[4]

Modelling

Attempts to model avalanche behaviour date from the early 20th century, notably the work of Professor Lagotala in preparation for the 1924 Winter Olympics in Chamonix.[5] His method was developed by A. Voellmy and popularised following the publication in 1955 of his Ueber die Zerstoerunskraft von Lawinen (On the Destructive Force of Avalanches).[6]

Voellmy used a simple empirical formula, treating an avalanche as a sliding block of snow moving with a drag force that was proportional to the square of the speed of its flow:[7]

Pref={1 \over 2} { \rho} { v^2}

He and others subsequently derived other formulae that take other factors into account, with the Voellmy-Salm-Gubler and the Perla-Cheng-McClung models becoming most widely used as simple tools to model flowing (as opposed to powder snow) avalanches.[5]

Since the 1990s many more sophisticated models have been developed. In Europe much of the recent work was carried out as part of the SATSIE (Avalanche Studies and Model Validation in Europe) research project supported by the European Commission[8] which produced the leading-edge MN2L model, now in use with the Service Réstitution Terrains en Montagne (Mountain Rescue Service) in France, and D2FRAM (Dynamical Two-Flow-Regime Avalanche Model), which was still undergoing validation as of 2007.[9]

Avalanche avoidance

United States Forest Service avalanche danger advisories.
Snow fences in Switzerland
Avalanche blasting in French ski resort Tignes (3,600 m)

Good avalanche safety is a continuous process, including route selection and examination of the snowpack, weather conditions, and human factors. Several well-known good habits can also minimize the risk. If local authorities issue avalanche risk reports, they should be considered and all warnings heeded[10]. Never follow in the tracks of others without your own evaluations. Observe the terrain and note obvious avalanche paths where vegetation is missing or damaged, where there are few surface anchors, and below cornices or ice formations. Avoid traveling below others who might trigger an avalanche.

Prevention

There are several ways to prevent avalanches and lessen their power and destruction. They are employed in areas where avalanches pose a significant threat to people, such as ski resorts and mountain towns, roads and railways. Explosives are used extensively to prevent avalanches, especially at ski resorts where other methods are often impractical. Explosive charges are used to trigger small avalanches before enough snow can build up to cause a large avalanche. Snow fences and light walls can be used to direct the placement of snow. Snow builds up around the fence, especially the side that faces the prevailing winds. Downwind of the fence, snow buildup is lessened. This is caused by the loss of snow at the fence that would have been deposited and the pickup of the snow that is already there by the wind, which was depleted of snow at the fence. When there is a sufficient density of trees, they can greatly reduce the strength of avalanches. They hold snow in place and when there is an avalanche, the impact of the snow against the trees slows it down. Trees can either be planted or they can be conserved, such as in the building of a ski resort, to reduce the strength of avalanches.

Artificial barriers can be very effective in reducing avalanche damage. There are several types. One kind of barrier (snow net) uses a net strung between poles that are anchored by guy wires in addition to their foundations. These barriers are similar to those used for rockslides. Another type of barrier is a rigid fence like structure (snow fence) and may be constructed of steel, wood or pre-stressed concrete. They usually have gaps between the beams and are built perpendicular to the slope, with reinforcing beams on the downhill side. Rigid barriers are often considered unsightly, especially when many rows must be built. They are also expensive and vulnerable to damage from falling rocks in the warmer months. Finally, there are barriers that stop or deflect avalanches with their weight and strength. These barriers are made out of concrete, rocks or earth. They are usually placed right above the structure, road or railway that they are trying to protect, although they can also be used to channel avalanches into other barriers. Occasionally, earth mounds are placed in the avalanche's path to slow it down.

Safety in avalanche terrain

Human survival and avalanche rescue

To quickly find and rescue a person buried in an avalanche, a probe, beacon, and shovel are essential. The buried person must also be wearing an avalanche beacon.

Even small avalanches are a serious danger to life, even with properly trained and equipped companions who avoid the avalanche. Between 55 and 65 percent of victims buried in the open are killed, and only 80 percent of the victims remaining on the surface survive. (McClung, p.177).

Research carried out in Italy[11] based on 422 buried skiers indicates how the chances of survival drop:

(Historically, the chances of survival were estimated at 85% within 15 minutes, 50% within 30 minutes, 20% within one hour).

Consequently it is vital that everyone surviving an avalanche is used in an immediate search and rescue operation, rather than waiting for help to arrive. Additional help can be called once it can be determined if anyone is seriously injured or still remains unaccountable after the immediate search (i.e., after at least 30 minutes of searching). Even in a well equipped country such as France, it typically takes 45 minutes for a helicopter rescue team to arrive, by which time most of the victims are likely to have died.

In some cases avalanche victims are not located until spring thaw melts the snow, or even years later when objects emerge from a glacier.

Search and rescue equipment

A Blackhawk helicopter as the crew prepares to evacuate tourists stranded by an avalanche in Galtür, Austria, on February 25, 1999.

Chances of a buried victim being found alive and rescued are increased when everyone in a group is carrying and using standard avalanche equipment, and have trained in how to use it. A beacon, shovel and probe is considered the minimum equipment to carry for companion rescue. Organized rescue involves ski patrols and mountain rescue teams who are often equipped with other technologies to search for buried victims.

Avalanche cords

The use of avalanche cords goes back just over 100 years to a Bavarian mountaineer named Eugen Oertel. Even the United States the concept was recommended as earlier as 1908 in the Colorado newspaper - the Ouray Herald (November 13) - when the editor repeated the suggestion that miners in the San Juans Mounains adopt "snowslide ribbons" to safeguard their travels to and from the mines.[12] The principle is simple. An approximately 15 meter long red cord (similar to parachute cord) is attached to the person in question's belt. While skiing, snowboarding, or walking the cord is dragged along behind the person. The assumption is that if the person gets buried in an avalanche, the light cord stays on top of the snow. Due to the color the cord would be easily visible for companions. Commercial avalanche cords have metal markings every one to three meters indicating the direction and length to the victim.

Avalanche cords were popular before beacons became available, and while cords were thought to be effective markers there was never any proof of their effectiveness. In the 1970s Melchoir Schild of the Swiss Federal Institute for Snow and Avalanche Research (SLF) reviewed 30 years of Swiss avalanche accidents and rescues from 1944/45 to 1973/74. Of the 2042 avalanche victims he found only seven cases where avalanche cords were used (not including the 2 mentioned above). In five cases part of the cord was visible on the surface but so too were part of the victims. In the sixth case the victim was completely buried, but part of the cord was visible. Sadly, this victim died of trauma. In the seventh case the completely buried avalanche cord was located by an avalanche rescue dog, however, the cord had become detached from the victim. Her body was found much later. In Knox Williams' and Betsy Armstrong's 1986 book The Avalanche Book they cite an early 1970s study where avalanche cords were tested on sandbag dummies. The dummies were placed onto steep slopes where explosives were used to trigger avalanches. Trials showed a portion of the cord remained on the surface only 40% of the time. The other 60% of the time the cord was completely buried along with the dummy. Typically the cord had spooled around the dummy. 1975, at a symposium of avalanche rescue experts hosted by the International Foundation Vanni Eigenmann, Schild concluded, “On the basis of these results the avalanche cord can no longer be considered reliable.”[13]

In the United States there have been two accidents with five buried victims, all wearing avalanche cords. In one accident, an avalanche cord remained on the surface. In the second accident five ski mountaineers with cords deployed triggered an avalanche. One skier was partly buried, but his four friends and cords were completely buried. Moderate snow and the loss of the survivor’s eyeglasses only worsened the situation. The search was called off a few days later. The four were eventually found many months later after their bodies with attached cords melted out of the snow. On one victim the cord was wrapped tightly around the body.

The avalanche cord should not used or accepted as being an adequate sole safety measure.

Beacons

Beacons — known as "beepers", peeps (pieps), ARVAs (Appareil de Recherche de Victimes en Avalanche, in French), LVS (Lawinen-Verschütteten-Suchgerät, Swiss German), avalanche transceivers, or various other trade names, are important for every member of the party. They emit a "beep" via 457 kHz radio signal in normal use, but may be switched to receive mode to locate a buried victim up to 80 meters away. Analog receivers provide audible beeps that rescuers interpret to estimate distance to a victim. To use the receiver effectively requires regular practice. Some older models of beepers operated on a different frequency (2.275 kHz ) and a group leader should ensure these are no longer in use.

Recent digital models also attempt to give visual indications of direction and distance to victims and require less practice to be useful. There are also passive transponder devices that can be inserted into equipment, but they require specialized search equipment that might only be found near an organized sports area.

Probes

avalanche security, search and rescue equipment (left to right): avalanche airbag system, collapsed probe, shovel, avalanche transceiver

Portable (collapsible) probes can be extended to probe into the snow to locate the exact location of a victim at several yards / metres in depth. When multiple victims are buried, probes should be used to decide the order of rescue, with the shallowest being dug out first since they have the greatest chance of survival.

Probing can be a very time-consuming process if a thorough search is undertaken for a victim without a beacon. In the U.S., 86% of the 140 victims found (since 1950) by probing were already dead. [1] Survival/rescue more than 2 m deep is rare (about 4%). Probes should be used immediately after a visual search for surface clues, in coordination with the beacon search.

Shovels

Even when the snowpack consists of loose powder, avalanche debris is hard and dense. The energy of the avalanche causes the snow to melt, and the debris refreezes immediately after it stops. Shovels are essential for digging through the snow to the victim, as the snow is often too dense to dig with hands or skis. A large strong scoop and sturdy handle are important. Plastic shovels often break, whereas metal ones are less prone to failure.[14]

As excavation of the avalanche victim is extremely time-consuming and many buried victims suffocate before they can be reached, shovelling technique is an essential element of rescue.[14]

Shovels are also useful for digging snow pits as part of evaluating the snow pack for hidden hazards, such as weak layers supporting large loads.

Avalung

Recently, a device called an Avalung has been introduced for use in avalanche terrain. The device consists of a mouth piece, a flap valve, an exhaust pipe, and an air collector, several models of Avalung either mount on one's chest or integrate in a proprietary backpack.

During an avalanche burial, victims not killed by trauma usually suffer from asphyxiation as the snow around them melts from the heat of the victims breath and then refreezes, disallowing oxygen flow to the victim & allowing toxic levels of CO2 to accumulate. The Avalung ameliorates this situation by drawing breath over a large surface area in front and pushing the warm exhaled carbon dioxide behind. This buys additional time for rescuers to dig the victim out.[15]

Other devices

More back-country adventurers are also carrying Emergency Position-Indicating Radio Beacon (EPIRB) or Personal Locating Beacons (PLBs) containing the Global Positioning System (GPS). This device can quickly notify search and rescue of an emergency and the general location (within 100 yards), but only if the person with the EPIRB has survived the avalanche and can activate the device. Alternatively, survivors may use a mobile phone to notify emergency personnel of their location obtained from a GPS without EPIRB capability.

Technology to summon outside help is to be used with the knowledge that those responding will probably be performing a body recovery. Only on-site rescuers are in position to render assistance during the brief interval that the victim is most likely to survive.

Other rescue devices are proposed, developed and used, such as avalanche balls, vests and airbags, based on statistics indicating that decreasing the depth of burial increases the chances of survival.

Although inefficient, some rescue equipment can be improvised by unprepared parties: ski poles can become short probes, skis or snowboards can be used as shovels. A first aid kit and equipment is useful for assisting survivors who may have cuts, broken bones, or other injuries, in addition to hypothermia.

Witnesses as rescuers

Periodic winter avalanches on this 800 m high slope transport woody debris to the flat in the foreground.

Survival time is short, if a victim is buried. The search for victims must start immediately; many people have died because the surviving witnesses failed to do even the simplest search.

Witnesses to an avalanche that engulfs people are frequently limited to those in the party involved in the avalanche. Those not caught should try to note the locations where the avalanched person or persons were last seen. In fact, anyone planning to enter an avalanche area should discuss this step as part of their preparation. Once the avalanche has stopped and the danger of secondary slides has passed, witnesses should mark these points with objects for reference. Then, survivors should take a headcount to determine who may be lost. If the area is safe to enter, the searchers should visually scan along a downslope trajectory from the marked points last seen. Victims who are partially or shallowly buried can often be located quickly by visually scanning the avalanche debris and pulling out clothing or equipment that may be attached to someone buried.

Because survival rates plummet as time passes, do not send a searcher for help during the critical first 15 minutes after an avalanche. Alert others if a radio is available, especially if help is nearby. Switch transceivers to receive mode, and check them. Select likely burial areas and search them, listening for beeps (or voices), expanding to other areas of the avalanche, always looking and listening for other clues (movement, equipment, body parts). Probe randomly in probable burial areas. Mark any points where signal was received or equipment found. Continue scanning and probing near marked clues and other likely burial areas. After 30 to 60 minutes, consider sending a searcher to get more help, because at this point, the remaining victims have probably not survived.

Line probes are arranged in most likely burial areas and marked as searched. Continue searching and probing the area until it is no longer feasible or reasonable to continue. Avoid contaminating the scent of the avalanche area with urine, food, spit, blood, etc., in case search dogs arrive.

Buried victims are most likely to be found--

• Below the marked point last seen

• Along the line of flow of the avalanche

• Around trees and rocks or other obstacles

• Near the bottom runout of the debris

• Along edges of the avalanche track

• In low spots where the snow may collect (gullies, crevasses, creeks, ditches along roads, etc.)

Although less likely, check other areas if initial searches are not fruitful.

Once buried victims are found and their heads are freed, perform first aid (airway, breathing, circulation/pulse, arterial bleeding, spinal injuries, fractures, shock, hypothermia, internal injuries, etc.), according to local law and custom.

Victims

An avalanche by Philipp Jakob Loutherbourg, 1803.

Victims caught in an avalanche are advised to try to ski or board toward the side of the avalanche until they fall, then to jettison their equipment and attempt swimming motions. As the snow comes to rest an attempt should be made to preserve an air-space in front of the mouth, and try to thrust an arm, leg or object above the surface, assuming you are still conscious. If it is possible to move once the snow stops, enlarge the air space, but minimize movement to reduce your oxygen consumption.

Myths about avalanches

Myth: Avalanches can be triggered by shouting - Avalanches cannot be triggered by sound as the forces exerted by the pressures in sound waves are far too low. The very large shockwaves produced by explosions can trigger avalanches, however, if they are close enough to the surface.[16]

Myth: Spitting while covered in snow can determine the direction upwards - Spitting while covered in snow is not helpful because when the snow has settled it becomes very solid and most of the time, moving is not possible.[17]

Notable avalanches

Two avalanches occurred in March 1910 in the Rocky Mountains; On March 1 the Wellington avalanche killed 96 in Washington State. Three days later 62 railroad workers were killed in the Rogers Pass avalanche in British Columbia.

During World War I, approximately 50,000 soldiers died as a result of avalanches during the mountain campaign in the Alps at the Austrian-Italian front, many of which were caused by artillery fire.[18][19] However, it is very doubtful avalanches were used deliberately at the tactical level as weapons; more likely they were simply a side effect to shelling enemy troops, occasionally adding to the toll taken by the artillery. Avalanche prediction is nearly impossible; forecasters can only assert the conditions, terrain and relative likelihood of slides with the help of detailed weather reports and from localized snowpack observation. It would be almost impossible to predict avalanche conditions many miles behind enemy lines, making it impossible to intentionally target a slope at risk for avalanches. Also, high priority targets received continual shelling and would be unable to build up enough unstable snow to form devastating avalanches, effectively imitating the avalanche prevention programs at ski resorts.

In the northern hemisphere winter of 1951-1952 approximately 649 avalanches were recorded in a three month period throughout the Alps in Austria, France, Switzerland, Italy and Germany. This series of avalanches killed around 265 humans and was termed the Winter of Terror.

In 1993, a massive avalanche killed 60 individuals in the Uzengili Village of Bayburt province in Turkey.

A large avalanche in Montroc, France, in 1999, 300,000 cubic metres of snow slid on a 30 degree slope, achieving a speed of 100 km/h (60 mph). It killed 12 people in their chalets under 100,000 tons of snow, 5 meters (15 ft) deep. The mayor of Chamonix was convicted of second-degree murder for not evacuating the area, but received a suspended sentence.[20]

The small Austrian village of Galtür was hit by the Galtür avalanche in 1999. The village was thought to be in a safe zone but the avalanche was exceptionally large and flowed into the village. Thirty-one people died.

European avalanche risk table

In Europe, the avalanche risk is widely rated on the following scale, which was adopted in April 1993 to replace the earlier non-standard national schemes. Descriptions were last updated in May 2003 to enhance uniformity. [2]

In France, most avalanche deaths occur at risk levels 3 and 4. In Switzerland most occur at levels 2 and 3. It is thought that this may be due to national differences of interpretation when assessing the risks.[21]

Risk Level Snow Stability Flag Avalanche Risk
1 - Low Snow is generally very stable. Avalanche-risk-1-2.svg Avalanches are unlikely except when heavy loads [2] are applied on a very few extreme steep slopes. Any spontaneous avalanches will be minor (sluffs). In general, safe conditions.
2 - Limited On some steep slopes the snow is only moderately stable [1]. Elsewhere it is very stable. Avalanche-risk-1-2.svg Avalanches may be triggered when heavy [2] loads are applied, especially on a few generally identified steep slopes. Large spontaneous avalanches are not expected.
3 - Medium On many steep slopes [1] the snow is only moderately or weakly stable. Avalanche-risk.svg Avalanches may be triggered on many slopes even if only light loads [2] are applied. On some slopes, medium or even fairly large spontaneous avalanches may occur.
4 - High On most steep slopes [1] the snow is not very stable. Avalanche-risk.svg Avalanches are likely to be triggered on many slopes even if only light loads [2] are applied. In some places, many medium or sometimes large spontaneous avalanches are likely.
5 - Very High The snow is generally unstable. Avalanche-risk-5.svg Even on gentle slopes, many large spontaneous avalanches are likely to occur.

[1] Stability:

[2] additional load:

Gradient:

European avalanche size table

Avalanche size:

Size Runout Potential Damage Physical Size
1 - Sluff Small snow slide that cannot bury a person, though there is a danger of falling. Unlikely, but possible risk of injury or death to people. length <50 m
volume <100 m³
2 - Small Stops within the slope. Could bury, injure or kill a person. length <100 m
volume <1,000 m³
3 - Medium Runs to the bottom of the slope. Could bury and destroy a car, damage a truck, destroy small buildings or break trees. length <1,000 m
volume <10,000 m³
4 - Large Runs over flat areas (significantly less than 30°) of at least 50 m in length, may reach the valley bottom. Could bury and destroy large trucks and trains, large buildings and forested areas. length >1,000 m
volume >10,000 m³

North American Avalanche Danger Scale

In the United States and Canada, the following avalanche danger scale is used. Descriptors vary depending on country.

Probability and trigger Degree and distribution of danger Recommended action in back country
Low (green) Natural avalanches very unlikely. Human triggered avalanches unlikely. Generally stable snow. Isolated areas of instability. Travel is generally safe. Normal caution advised.
Moderate (yellow) Natural avalanches unlikely. Human triggered avalanches possible. Unstable slabs possible on steep terrain. Use caution in steeper terrain
Considerable (orange) Natural avalanches possible. Human triggered avalanches probable. Unstable slabs probable on steep terrain. Be increasingly cautious in steeper terrain.
High (red) Natural and human triggered avalanches likely. Unstable slabs likely on a variety of aspects and slope angles. Travel in avalanche terrain is not recommended. Safest travel on windward ridges of lower angle slopes without steeper terrain above.
Extreme (red/black border) Widespread natural or human triggered avalanches certain. Extremely unstable slabs certain on most aspects and slope angles. Large destructive avalanches possible. Travel in avalanche terrain should be avoided and travel confined to low angle terrain well away from avalanche path run-outs.

Canadian classification for avalanche size

The Canadian classification for avalanche size is based upon the consequences of the avalanche. Half sizes are commonly used.[22]

Size Destructive Potential
1 Relatively harmless to people.
2 Could bury, injure or kill a person.
3 Could bury and destroy a car, damage a truck, destroy a small building or break a few trees.
4 Could destroy a railway car, large truck, several buildings or a forest area up to 4 hectares.
5 Largest snow avalanche known. Could destroy a village or a forest of 40 hectares.

United States classification for avalanche size

Size Destructive Potential[22]
1 Sluff or snow that slides less than 50m (150') of slope distance.
2 Small, relative to path.
3 Medium, relative to path.
4 Large, relative to path.
5 Major or maximum, relative to path.

See also

References

Bibliography

Notes

  1. 1.0 1.1 Pascal Hageli et al.
  2. SATSIE Final Report (large PDF file - 33.1 Mb), page 94, October 1, 2005 to May 31, 2006
  3. Horizon: Anatomy of an Avalanche, BBC', 1999-11-25
  4. Avalanche Dynamics, Art Mears, 2002-07-11
  5. 5.0 5.1 Snow Avalanches, Christophe Ancey
  6. VOELLMY, A., 1955. Ober die Zerstorunskraft von Lawinen. Schweizerische Bauzetung (English: On the Destructive Force of Avalanches. U.S. Dept. of Agriculture, Forest Service).
  7. Quantification de la sollicitation structures métaliques avalancheuse par analyse en retour du comportement de structures métallliques, page 14, Pôle Grenoblois d’études et de recherche pour la Prévention des risques naturels, October 2003, in French
  8. SATSIE - Avalanche Studies and Model Validation in Europe
  9. SATSIE Final Report (large PDF file - 33.1 Mb), October 1, 2005 to May 31, 2006
  10. Avalanche bulletins worldwide
  11. Nature vol. 368, p. 21.
  12. (2009) Atkins, D. History 101: Avalanche cords. The Avalanche Review vol. 27, no. 3, February 2009.
  13. (2009) Atkins, D. History 101: Avalanche cords. The Avalanche Review vol. 27, no. 3, February 2009.
  14. 14.0 14.1 "V-Shaped Conveyor-Belt Approach to Snow Transport" Genswein, Manuel and Ragnhild Eide, The Avalanche Review vol. 26, no. 3, February 2008
  15. "I Was an Avalanche Test Dummy", Lindsay Yaw, Outside, accessed 9/26/08
  16. "Mitigation and Land Use - Avalanches", Colorado Geological Survey
  17. http://www.mountaineersbooks.org/client/client_pages/Media%20Archives/mtn_media_AvalancheMyths.cfm "Avalanche Myths"
  18. Eduard Rabofsky et al., Lawininenhandbuch, Innsbruck, Verlaganstalt Tyrolia, 1986, p. 11
  19. History Channel - December 13, 1916: Soldiers perish in avalanche as World War I rages
  20. PisteHors.com: Montroc Avalanche
  21. An Analysis of French Avalanche Accidents for 2005-2006
  22. 22.0 22.1 Jamieson, Bruce (2000). Backcountry Avalanche Awareness. Canadian Avalanche Association. ISBN 0-9685856-1-2. 

External links