X chromosome

Scheme of the X chromatid
Nucleus of a female amniotic fluid cell. Top: Both X-chromosome territories are detected by FISH. Shown is a single optical section made with a confocal microscope. Bottom: Same nucleus stained with DAPI and recorded with a CCD camera. The Barr body is indicated by the arrow, it identifies the inactive X (Xi).

The X chromosome is one of the two sex-determining chromosomes in many animal species, including mammals (the other is the Y chromosome). It is a part of the XY sex-determination system and X0 sex-determination system. The X chromosome was named for its unique properties by early researchers, and this resulted in its counterpart being named the Y chromosome for the next letter in the alphabet when it was discovered later.[1]

Contents

In humans

Function

The sex chromosomes X X are one of the 23 homologous pairs of chromosomes in a female. The X chromosome spans more than 153 million base pairs (the building material of DNA) and represents about 5% of the total DNA in women's cells, 2.5% in men's.

Each person normally has one pair of sex chromosomes in each cell. Females have two X chromosomes, while males have one X and one Y chromosome. Both males and females retain one of their mother's X chromosomes, and females retain their second X chromosome from their father. Since the father retains his X chromosome from his mother, a human female has one X chromosome from her paternal grandmother, and one X chromosome from her mother.

Identifying genes on each chromosome is an active area of genetic research. Because researchers use different approaches to predict the number of genes on each chromosome, the estimated number of genes varies. The X chromosome contains about 2000[2] genes compared to the Y chromosome containing 78[3] genes, out of the estimated 20,000 to 25,000 total genes in the human genome. Genetic disorders that are due to mutations in genes on the X chromosome are described as X linked.

The X chromosome carries a couple thousand genes but few, if any, of these have anything to do directly with sex determination. Early in embryonic development in females, one of the two X chromosomes is randomly and permanently inactivated in nearly all somatic cells (cells other than egg and sperm cells). This phenomenon is called X-inactivation or Lyonization, and creates a Barr body. X-inactivation ensures that females, like males, have one functional copy of the X chromosome in each body cell. It was previously assumed that only one copy is actively used. However, recent research suggests that the Barr body may be more biologically active than was previously supposed.[4]

Structure

The X-chromosome is a remarkably gene-poor region. It is composed primarily of repeated segments of DNA which do not code for proteins or any known function. Only 1.7% of the chromosome encodes for any functional proteins at all--lowest density of genes to date--and the genes themselves are very short compared to the length of the average human gene. It is estimated that about 10% of the genes encoded by the X-chromosome are associated with a family of "CT" genes, so named because they encode for markers found in both tumor cells (in Cancer patients) as well as in the human Testis (in healthy patients). These CT genes found on the X-chromosome are estimated to account for about 90% of all the CT genes encoded within the human genome. Due to their relative abundance, it is thus hypothesized that these genes (and thus the X-chromosome) confer evolutionary fitness to human males. [5]

It is theorized by Ross et al 2005 and Ohno 1967 that the X-chromosome is at least partially derived from the autosomal (non-sex-related) genome of other mammals evidenced from interspecies genomic sequence alignments.

The X-chromosome is notably larger and has a more active euchromatin region than its Y-chromosome counterpart. Further comparison of the X and Y reveal regions of homology between the two. However, the corresponding region in the Y appears far shorter and lacks regions which are conserved in the X throughout primate species, implying a genetic degeneration for Y in that region. Because males have only one x-chromosome, they are more likely to have an x-chromosome related disease.

Role in diseases

Chromosome X Etude Inactivation X.PNG

Numerical abnormalities

Klinefelter's syndrome:

Triple X syndrome (also called 47,XXX or trisomy X):

Turner syndrome:

X-linked inherited diseases

Main article: Sex linkage

X-linked inherited diseases are caused by gene mutations on the X chromosome. Such genes do not necessarily code for any feminization or demasculinization per se, in contrast to the numerical abnormalities above. X-linked inherited diseases are either recessive or dominant.

Diseases well known for their X-linked recessive inheritance are hemophilia (types A and B), Duchenne muscular dystrophy and color blindness.

Other

XX male syndrome is a rare disorder, where the SRY region of the Y chromosome has recombined to be located on one of the X chromosomes. As a result, the XX combination after fertilization has the same effect as a XY combination, resulting in a male. However, the other genes of the X chromosome cause feminization as well.

See also

References

  1. Angier, Natalie (2007-05-01). "For Motherly X Chromosome, Gender Is Only the Beginning". New York Times. Retrieved on 2007-05-01.
  2. Macmillan Science Library (2001). "Genetics on X Chromosome".
  3. Richard Harris (2003). "Scientists Decipher Y Chromosome".
  4. Carrel L, Willard H (2005). "X-inactivation profile reveals extensive variability in X-linked gene expression in females". Nature 434 (7031): 400–4. doi:10.1038/nature03479. 
  5. Ross M et al. (2005). "The DNA sequence of the human X chromosome". Nature 434 (7031): 325–37. doi:10.1038/nature03440. http://www.nature.com/nature/journal/v434/n7031/full/nature03440.html.