Invasive species

Kudzu, a Japanese vine species invasive in the southeast United States, growing in Atlanta, Georgia
See also: Introduced species and Weed

Invasive species is a phrase with several definitions. The first definition expresses the phrase in terms of non-indigenous species (e.g. plants or animals) that adversely affect the habitats they invade economically, environmentally or ecologically. It has been used in this sense by government organizations[1][2] as well as conservation groups such as the IUCN.[3]

The second definition broadens the boundaries to include both native and non-native species that heavily colonize a particular habitat.[3]

The third definition is an expansion of the first and defines an invasive species as a widespread non-indigenous species.[3] This last definition is arguably too broad as not all non-indigenous species necessarily have an adverse effect on their adopted environment. An example of this broader use would include the claim that the common goldfish (Carassius auratus) is invasive. Although it is common outside its range globally, it almost never appears in harmful densities.[3]

Because of the ambiguity of its definition, the phrase invasive species is often criticized as an imprecise term within the field of ecology.[3] This article concerns the first two definitions; for the third, see introduced species.

Contents

Conditions that lead to invasion

Scientists propose several mechanisms to explain invasive species, including: species-based mechanisms and ecosystem-based mechanisms, most likely, it is a combination of several mechanisms that cause an invasive situation to occur since most introduced plants and animals do not become invasive.

Species-based mechanisms

Species-based characteristics focus on competition. While all species compete to survive, invasive species appear to have specific traits or combinations of specific traits that allow them to outcompete native species. Sometimes they just have the ability to grow and reproduce more rapidly than native species; often it's more complex, involving a multiplex of traits and interactions.

Several traits have been singled out by researchers as predictors of invasive ability. For example in plants, the ability to reproduce both asexually (vegetatively) as well as sexually, rapid growth, early sexual maturity, high reproductive output, the ability to disperse young widely, tolerance of a broad range of environmental conditions, high phenotypic plasticity and allelopathy are all abilities that might aid an invasive plant in establishing and proliferating in a new environment.

Studies seem to indicate that certain traits mark a species as potentially invasive. One study found that of a list of invasive and noninvasive species, 86% of the invasive species could be identified from the traits alone.[4] Another study found that invasive species tended to only have a small subset of the invasive traits and that many of these invasive traits were found in non-invasive species as well indicating that invasiveness involves complex interaction not easily categorized.[4][5][6] Common invasive species traits include fast growth, rapid reproduction, high dispersal ability, phenotypic plasticity (the ability to alter one’s growth form to suit current conditions), tolerance of a wide range of environmental conditions, ability to live off of a wide range of food types, asexual reproduction, and association with humans.[7] The single best predictor of invasiveness, however, is whether or not the species has been invasive elsewhere.[8] Typically an introduced species must survive at low population densities before it becomes invasive in a new location.[9] At low population densities, it is often difficult for the introduced species to reproduce and maintain itself in a new location, but often because of human actions a species might be transported to a location a number of times before it become established. Humans repeated patterns of movement from one location to another, such as ships sailing to and from ports or cars driving up and down highways, allow for species to have multiple opportunities for establishment (also known as a high “propagule pressure”).[10]

An introduced species might become invasive if it can out compete native species for resources such as nutrients, light, physical space, water or food. Some species when introduced into a new environment lack the competition and predation they evolved under in their native environments freeing them to proliferate quickly. Ecosystems where all available resources are being used to their full capacity by native species can be modeled as zero-sum systems, where any gain for the invader is a loss for the native. However, such unilateral competitive superiority (and instant, equivalent extinction of native species with increased populations of the invader) is not the rule.[11][12] Invasive species often coexist with native species for an extended time and gradually the superior competitive ability of an invasive species become apparent when its population grows larger and denser often after it adapts to its new location.

Lantana growing in abandoned citrus plantation; Moshav Sdey Hemed, Israel

An invasive species might be able to use resources previously unavailable to native species, such as deep water sources accessed by a long taproot, or an ability to live on previously uninhabited soil types. For example, barb goatgrass (Aegilops triuncialis), can be found in its introduced range in California on serpentine soils, which have low water-holding capacity, low nutrients, high Mg/Ca ratio, and possible heavy metal toxicity. Plant populations on these soils tend to show low density but goatgrass can form dense stands on these soils crowding out native species that have not adapted well to growing on serpentine soils.[13] Invasive species are either plant or animal, from another area and over-compete other native species living in the area.

Facilitation is the mechanism by which some species can alter their environment through chemicals or manipulation of abiotic factors, usually to make it less favorable for other species to compete against them, allowing the species to grow or reproduce. One such facilitative mechanism is allelopathy, also known as chemical competition. In allelopathy a plant or in Interference Competition a bacterium will secrete chemicals which make the surrounding soil uninhabitable, or at least inhibitory, to other competing species.

One example of this is the knapweed (Centaurea diffusa). This Eastern European weed has spread its way through the western United States. Experiments show that 8-Hydroxyquinoline, a chemical produced at the root of C. diffusa, has a negative effect only on plants that have not co-evolved with C. diffusa. Such co-evolved native plants have also evolved defenses, and C. diffusa does not appear in its native habitat to be an overwhelmingly successful competitor. This result shows how difficult it can be to predict whether a species will be invasive just from looking at its behavior in its native habitat, and demonstrates the potential for novel weapons to aid in invasiveness ).[14][15]

Changes in fire regimes are another form of facilitation. Bromus tectorum, originally from Eurasia, is highly fire-adapted. It not only spreads rapidly after burning, but actually increases the frequency and intensity (heat) of fires, by providing large amounts of dry detritus during the dry fire season in western North America. In areas where it is widespread, it has altered the local fire regime so much that native plants cannot survive the frequent fires, allowing B. tectorum to further extend and maintain dominance in its introduced range.[16]

Facilitation also occurs when one species physically modifies a habitat and that modification is advantageous to other species. For example, zebra mussels increase habitat complexity on lake floors providing nooks and crannies in which invertebrates live. This increase in complexity, together with the nutrition provided by the waste products of mussel filter-feeding increases the density and diversity of benthic invertebrate communities.[17]

Ecosystem-based mechanisms

In ecosystems the amount of resources available and how much of those resources are utilized by organisms, determine the effects of new additions to the ecosystem. In stable ecosystems equilibrium exists in the utilization of available resources.

When changes occur in an ecosystem, like forest fires removing large stands of vegetation in an area, normal succession would favor certain native grasses and forbs, but with the introduction of a species that can multiply and spread faster on open ground than the native species, the balance is changed and the resources that would have been used by the native species are now utilized by an invader thus impacting the ecosystem and changing its composition of organisms and their use of available resources. The data shows that nitrogen and phosphorus are often the limiting factors for a situation such as this.[18]

Every species has a role to play in its native ecosystem; some species fill large and varied roles while others are highly specialized. These roles are known as niches. Some invading species are able to fill niches that are not utilized by native species, and they also can create niches that did not exist.

When changes occur to ecosystems, conditions change that impact the dynamics of species interaction and niche development. This can cause once rare species to replace other species, because they now can utilize greater available resources that did not exist before, an example would be the edge effect. The changes can favor the expansion of a species that without the change would not be able to colonize areas and niches that did not exist before.

This mechanism describes a situation where the ecosystem in question has suffered a disturbance of some sort, which changes the fundamental nature of the ecosystem.[19]

Ecology

Pied Currawong

Although an invasive species is often defined as an introduced species that has spread widely and causes harm, some species native to a particular area can, under the influence of natural events such as long-term rainfall changes or human modifications to the habitat, increase in numbers and become invasive.

All species on Earth go through periods of increasing and decreasing population numbers, in many cases accompanied by expansion and contraction of range. Human “alterations” on the landscape are especially significant. Anthropogenic alteration of an environment may enable the expansion of a species into a geographical area where it had not been seen before and thus that species could be described as invasive. In essence, one must define "native" with care, as it refers to some natural geographic range of a species, and is not coincident with human political boundaries. Whether noticed increases in population numbers and expanding geographical ranges is sufficient reason to regard a native species as "invasive" requires a broad definition of the term but some native species in disrupted ecosystems can spread widely and cause harm and in that sense become invasive. For example the Monterey Cypress is a rare and endangered endemic[20] naturally occurring only in two small stands in California. They are being exterminated as exotic invasive species less than 50 miles (80 km) from their native home.

Traits of invaded ecosystems

In 1958, Charles S. Elton[21] argued that ecosystems with higher species diversity were less subject to invasive species because of fewer available niches. Since then, other ecologists have pointed to highly diverse, but heavily invaded ecosystems and have argued that ecosystems with high species diversity seem to be more susceptible to invasion.[11] In the end, this debate seems largely to hinge on the spatial scale at which invasion studies are performed, and the issue of how diversity affects community susceptibility to invasion remains unresolved. Small-scale studies tend to show a negative relationship between diversity and invasion, while large-scale studies tend to show a positive relationship. The latter result may be an artifact of invasive or non-native species capitalizing on increased resource availability and weaker overall species interactions that are more common when larger samples are considered.[22][23]

The brown tree snake (Boiga irregularis)

Invasion is more likely if an ecosystem is similar to the one in which the potential invader evolved.[7] Island ecosystems may be prone to invasion because their species are “naïve” and have faced few strong competitors and predators throughout their existence, or because their distance from colonizing species populations makes them more likely to have “open” niches.[24] An example of this phenomenon is the decimation of the native bird populations on Guam by the invasive brown tree snake.[25] Alternately, invaded ecosystems may lack the natural competitors and predators that keep introduced species in check in their native ecosystems, a point that is also seen in the Guam example. Lastly, invaded ecosystems have often experienced disturbance, usually human-induced.[7] This disturbance may give invasive species, which are not otherwise co-evolved with the ecosystem, a chance to establish themselves with less competition from more adapted species[9]

Vectors

Non-native species have many vectors, including many natural ones, but most of the species considered "invasive" are associated with human activity. Natural range extensions are common in many species, but the rate and magnitude of human-mediated extensions in these species tend to be much larger than natural extensions, and the distances that species can travel to colonize are also often much greater with human agency.[26]

Chinese mitten crab (Eriocheir sinensis)

One of the earliest human influenced introductions involves prehistoric humans introducing the Pacific rat (Rattus exulans) to Polynesia.[27] Today, non-native species come from horticultural plants either in the form of the plants themselves or animals and seeds carried with them, and from animals and plants released through the pet trade. Invasive species also come from organisms stowed away on every type of transport vehicle imaginable. For example, ballast water taken up at sea and released in port is a major source of exotic marine life. The invasive freshwater zebra mussels, native to the Black, Caspian and Azov seas, were probably transported to the Great Lakes via ballast water from a transoceanic vessel.[28]

Species have also been introduced intentionally. For example, to feel more "at home", American colonists formed "Acclimation Societies" that repeatedly released birds that were native to Europe until they finally established along the east coast of North America.

Economics play a major role in exotic species introduction. The scarcity and demand for the valuable Chinese mitten crab is one explanation for the possible intentional release of the species in foreign waters.

Impact

Ecological impacts

Biological species invasions alter ecological systems in a multitude of ways. Worldwide an estimated 80% of endangered species could suffer losses by competition with or predation by invasive species.[29] Pimentel also reports that introduced species, such as corn, wheat, rice, and other food crops, and cattle, poultry, and other livestock, now provide more than 98% of the U.S. food system at a value of approximately $800 billion per year."[29] As highly adaptable and generalized species are introduced to environments already impacted by human activities, some native species may be put at a disadvantage to survive while other species survival is enhanced.

Researchers collect samples of Eurasian Watermilfoil from a lake in Wisconsin.

Land clearing and human habitation put significant pressure on local species and disturbed habitat is often prone to invasions that can have adverse effects on local ecosystems, changing ecosystem functions. A species of wetland plant known as ʻaeʻae in Hawaiʻi (the indigenous Bacopa monnieri) is regarded as a pest species in artificially manipulated water bird refuges because it quickly covers shallow mudflats established for endangered Hawaiian stilt (Himantopus mexicanus knudseni), making these undesirable feeding areas for the birds. Sometimes, multiple successive introductions of different nonnative species can have interactive effects, where the introduction of a second non-native species can enable the first invasive species to flourish. Examples of this are the introductions of the amethyst gem clam (Gemma gemma) and the European green crab (Carcinus maenas). The gem clam was introduced into California's Bodega Harbor from the East Coast of the United States a century ago. It had been found in small quantities in the harbor but had never displaced the native clam species (Nutricola spp.). In the mid 1990s, the introduction of the European green crab, found to prey preferentially on the native clams, resulted in a decline of the native clams and an increase of the introduced clam populations.[30]

In the Waterberg region of South Africa, cattle grazing over the past six centuries has allowed invasive scrub and small trees to displace much of the original grassland, resulting in a massive reduction in forage for native bovids and other grazers. Since the 1970s large scale efforts have been underway to reduce invasive species; partial success has led to re-establishment of many species that had dwindled or left the region. Examples of these species are giraffe, Blue Wildebeest, impala, kudu and White Rhino.

This native Canadian Eastern Cottontail rabbit among non-native plants Garlic Mustard, Mugwort, and Burdock.

Invasive species can change the functions of ecosystems. For example invasive plants can alter the fire regime (cheatgrass, Bromus tectorum), nutrient cycling (smooth cordgrass Spartina alterniflora), and hydrology (Tamarix) in native ecosystems.[31] Invasive species that are closely related with rare native species have the potential to hybridize with native species. Harmful effects of hybridization have led to a decline and even extinction of native species.[32][33] For example, hybridization with introduced cordgrass, Spartina alterniflora, threatens the existence of California cordgrass (Spartina foliosa) in San Francisco Bay.[34]

Genetic pollution

Main article: Genetic pollution

Purebred naturally evolved region specific wild species can be threatened with extinction[35] through the process of genetic pollution i.e. uncontrolled hybridization, introgression and genetic swamping which leads to homogenization or replacement of local genotypes as a result of either a numerical and/or fitness advantage of introduced plant or animal.[36] Non-native species can bring about a form of extinction of native plants and animals by hybridization and introgression either through purposeful introduction by humans or through habitat modification, bringing previously isolated species into contact. These phenomena can be especially detrimental for rare species coming into contact with more abundant ones where the abundant ones can interbreed with them swamping the entire rarer gene pool creating hybrids thus driving the entire original purebred native stock to complete extinction. Attention has to be focused on the extent of this under appreciated problem that is not always apparent from morphological (outward appearance) observations alone. Some degree of gene flow may be a normal, evolutionarily constructive process, and all constellations of genes and genotypes cannot be preserved however, hybridization with or without introgression may, nevertheless, threaten a rare species' existence.[37][38]

Economic impacts

Costs Economic costs from invasive species can be separated into direct costs through production loss in agriculture and forestry, and management costs of invasive species. Estimated damage and control cost of invasive species in the U.S. alone amount to more than $138 billion annually.[29] In addition to these costs, economic losses can occur through loss of recreational and tourism revenues.[39] Economic costs of invasions, when calculated as production loss and management costs, are low because they do not usually consider environmental damages. If monetary values could be assigned to the extinction of species, loss in biodiversity, and loss of ecosystem services, costs from impacts of invasive species would drastically increase.[29] The following examples from different sectors of the economy demonstrate the impact of biological invasions.

Benefits Often overlooked, economic benefits from so-called "invasive" species should also be accounted. The wide range of benefits from many "invasives" is both well-documented and under-reported. Asian oysters, for example, are better at filtering out water pollutants than native oysters. They also grow faster and withstand disease better than natives. Biologists are currently considering releasing the mollusk in the Chesapeake Bay to help restore oyster stocks and clean up the bay's pollution. A recent study by the Johns Hopkins School of Public Health found the Asian oyster could significantly benefit the bay's deteriorating water quality.[40] In fact, invasives have become such a common part of our environment, culture and even diet that we don't think about them. For example, soybeans, kiwi fruit, wheat and all cattle except the turkey are exotic species. Collectively, nonnative crops and livestock comprise 98 percent of our food system.[41] These and other benefits from invasives are so vast that, according to the Congressional Research Service, they probably exceed the costs.[42] Regrettably, benefits are rarely considered in reports and studies on the species' impact; nor are benefits much reported in news stories and articles on non-indigenous species.

Agriculture

Agricultural weeds cause an overall reduction in yield, though they often provide essential nutrients for subsistence farmers. Weeds can have other useful purposes: some deep-rooted weeds can "mine" nutrients from the subsoil and bring them to the topsoil, while others provide habitat for beneficial insects and/or provide alternative foods for pest species. Many weed species are accidental introductions with crop seeds and imported plant material. Many introduced weeds in pastures compete with native forage plants, are toxic (e.g., leafy spurge, Euphorbia esula) to young cattle (older animals will avoid them) or non palatable because of thorns and spines (e.g., yellow star thistle, Centaurea solstitialis). Forage loss from invasive weeds on pastures amounts to nearly $1 billion in the U.S. alone.[29] A decline in pollinator services and loss of fruit production has been observed to cause the infection of honey bees (Apis mellifera another invasive species to the Americas) by the invasive varroa mite. Introduced rodents (rats, Rattus rattus and R. norvegicus) have become serious pests on farms destroying stored grains.[29]

In many cases, one could consider the over-abundant invasive plant species as a ready source of biomass in the perspective of biogas production. See Eichhornia crassipes.

Forestry

The unintentional introduction of forest pest species and plant pathogens can change forest ecology and negatively impact timber industry. The Asian long-horned beetle (Anoplophora glabripennis) was first introduced into the U.S. in 1996 and is expected to infect and damage millions of acres of hardwood trees. Thirty million dollars have already been spent in attempts to eradicate this pest and protect millions of trees in the affected regions.[29]

The woolly adelgid inflicts damage on old growth spruce fir forests and negatively impacts the Christmas tree industry.[43] The chestnut blight fungus (Cryphonectria parasitica) and Dutch elm disease (Ophiostoma novo-ulmi) are two plant pathogens with serious impacts on forest health.

Tourism and recreation

Invasive species can have impacts on recreational activities such as fishing, hunting, hiking, wildlife viewing, and water-based recreation. They negatively affect a wide array of environmental attributes that are important to support recreation, including but not limited to water quality and quantity, plant and animal diversity, and species abundance.[44] Eiswerth goes on to say that "very little research has been performed to estimate the corresponding economic losses at spatial scales such as regions, states, and watersheds." Eurasian Watermilfoil (Myriophyllum spicatum) in parts of the US, fill lakes with plants making fishing and boating difficult.[45]

Health impacts

An increasing threat of exotic diseases exists because of increased transportation and encroachment of humans into previously remote ecosystems that can lead to new associations between a disease and a human host (e.g., AIDS virus in human host.[29]) Introduced birds (e.g. pigeons), rodents and insects (e.g. mosquitoes, fleas, lice and tsetse fly) can serve as vectors and reservoirs of human diseases. The introduced Chinese mitten crabs from China are carriers of the Asian lung fluke. [46] Throughout recorded history epidemics of human diseases such as malaria, yellow fever, typhus, and bubonic plague have been associated with these vectors.[21] A recent example of an introduced disease is the spread of the West Nile virus across North America resulting in human deaths and in the deaths of many birds, mammals, and reptiles.[47] Waterborne disease agents, such as Cholera bacteria (Vibrio cholerae), and causative agents of harmful algal blooms are often transported via ballast water.[48] The full range of impacts of invasive species and their control goes beyond immediate effects and can have long term public health implications. For instance, pesticides applied to treat a particular pest species could pollute soil and surface water.[29]

Threat to global biodiversity

Main article: Biodiversity

Biotic invasion is one of the five top drivers for global biodiversity loss and is increasing because of tourism and globalization. It poses a particular risk to inadequately regulated fresh water systems, though quarantines and ballast water rules have improved the situation in other respects.[49]

Historically the deliberate introduction of non-native species has been done with little or no consideration of the impact outside of having a favored animal, fish, or plant available locally, or perhaps an ill-conceived attempt to control a native pest. In areas with highly endemic, specialized and isolated flora and fauna such as Australia, New Zealand, Madagascar, the Hawaiian Archipelago, and the Galapagos Islands, introduced species that successfully establish themselves in habitats utilized by natives compete for limited resources or prey on the native species, some of which are unable to adapt to the more competitive environment and gradually die out.

As more adaptable and generalized species are introduced to environments impacted adversely by human activities, some native species may be put at a disadvantage to survive while others thrive in the modified ecosystem. One of the primary threats to biodiversity is the spread of humanity into what were once isolated areas with land clearing and habitation putting significant pressure on local species. Agriculture, livestock and fishing can also introduce changes to local populations of indigenous species which may result in a previously innocuous native species becoming a pest because of a reduction of natural predators.

Attempting a scientific definition

In an attempt to avoid the ambiguous, subjective, and pejorative vocabulary that so often accompanies discussion of invasive species even in scientific papers, Colautti and MacIsaac[3] have proposed a new nomenclature system based on biogeography rather than on taxa. Their system categorizes a species into the following stages:

Stage Characteristic
0 Propagules residing in a donor region
I Traveling
II Introduced
III Localized and numerically rare
IVa Widespread but rare
IVb Localized but dominant
V Widespread and dominant

By removing taxonomy, human health, and economic factors from consideration, this model focuses only on ecological factors. The model evaluates individual populations, and not entire species. This model does not attribute detrimentality to invasive species and beneficiality to native species. It merely classifies a species in a particular location based on its growth patterns in that particular microenvironment. This model could be applied equally to indigenous and to non-native species.

See also

References

  1. (September 21 2006). National Invasive Species Information Center - What is an Invasive Species?. United States Department of Agriculture: National Agriculture Library. Retrieved on September 1 2007.
  2. USA (1999). Executive Order 13112 of February 3, 1999: Invasive Species. Federal Register 64(25), 6183-6186.
  3. 3.0 3.1 3.2 3.3 3.4 3.5 Colautti, Robert I.; MacIsaac, Hugh J. (2004), "A neutral terminology to define 'invasive' species" (PDF), Diversity and Distributions 10: 135–141, doi:10.1111/j.1366-9516.2004.00061.x, http://planet.botany.uwc.ac.za/nisl/Invasives/Assignment1/ColauttiandMacIsaac.pdf, retrieved on 2007-07-11 
  4. 4.0 4.1 Kolar, C.S.; D.M. Lodge (2001). "Progress in invasion biology: predicting invaders". Trends in Ecology & Evolution 16 (4): 199–204. doi:10.1016/S0169-5347(01)02101-2. 
  5. Thebaud, C.; A.C. Finzi, L. Affre, M. Debussche, J. Escarre (1996). "Assessing why two introduced Conyza differ in their ability to invade Mediterranean old fields". Ecology 77 (3): 791–804. doi:10.2307/2265502. 
  6. Reichard, S.H.; C. W. Hamilton (1997). "Predicting invasions of woody plants introduced into North America". Conservation Biology 11 (1): 193–203. doi:10.1046/j.1523-1739.1997.95473.x. 
  7. 7.0 7.1 7.2 Williams, J.D.; G. K. Meffe (1998). "Nonindigenous Species". Status and Trends of the Nation’s Biological Resources. Reston, Virginia: United States Department of the Interior, Geological Survey 1. 
  8. Ewell, J.J.; D.J. O’Dowd, J. Bergelson, C.C. Daehler, C.M. D’Antonio, L.D. Gomez, D.R. Gordon, R.J. Hobbs, A. Holt, K.R. Hopper, C.E. Hughes, M. LaHart, R.R.B. Leakey, W.G. Wong, L.L. Loope, D.H. Lorence, S.M. Louda, A.E. Lugo, P.B. McEvoy, D.M. Richardson, and P.M. Vitousek (1999). "Deliberate introductions of species: Research needs - Benefits can be reaped, but risks are high". Bioscience 49: 619–630. 
  9. 9.0 9.1 Tilman, D. (2004). "INAUGURAL ARTICLE: Niche tradeoffs, neutrality, and community structure: A stochastic theory of resource competition, invasion, and community assembly". Proceedings of the National Academy of Sciences 101: 10854–10861. doi:10.1073/pnas.0403458101. PMID 15243158. 
  10. Verling, E.; G.M. Ruiz, L.D. Smith, B. Galil, A.W. Miller, and K.R. Murphy (2005). "Supply-side invasion ecology: characterizing propagule pressure in coastal ecosystems". Proceedings of the Royal Society of London, Ser. B: Biological Science 272: 1249–1256. doi:10.1098/rspb.2005.3090. 
  11. 11.0 11.1 Stohlgren, T.J.; D. Binkley, G.W. Chong, M.A. Kalkhan, L.D. Schell, K.A. Bull, Y. Otsuki, G. Newman, M. Bashkin, and Y. Son (1999). "Exotic plant species invade hot spots of native plant diversity". Ecological Monographs 69: 25–46. 
  12. Sax, D.F.; S. D. Gaines and J. H. Brown (2002). "Species Invasions Exceed Extinctions on Islands Worldwide: A Comparative Study of Plants and Birds". American Naturalist 160: 766–783. doi:10.1086/343877. 
  13. Huenneke, L.; S. Hamburg, R. Koide, H. Mooney, and P. Vitousek (1990). "Effects of soil resources on plant invasion and community structure in California (USA) serpentine grassland". Ecology 71: 478–491. doi:10.2307/1940302. 
  14. Hierro, J.L.; R.M. Callaway (2003). "Allelopathy and exotic plant invasion". Plant and Soil 256 (1): 29–39. doi:10.1023/A:1026208327014. 
  15. Vivanco, J.M.; H.P. Bais, F.R. Stermitz, G.C. Thelen, R.M. Callaway (2004). "Biogeographical variation in community response to root allelochemistry: Novel weapons and exotic invasion". Ecology Letters 7 (4): 285–292. doi:10.1111/j.1461-0248.2004.00576.x. 
  16. Brooks, M.L.; C. M. D’Antonio, D. M. Richardson, J. B. Grace, J. E. Keeley, J. M. DiTomaso, R. J. Hobbs, M. Pellant, and D. Pyke (2004). "Effects of invasive alien plants on fire". BioScience 54 (54): 677–688. doi:10.1641/0006-3568(2004)054[0677:EOIAPO]2.0.CO;2. 
  17. Silver Botts, P.; B. A. Patterson and D. Schlosser (1996). "Zebra mussel effects on benthic invertebrates: Physical or biotic?". Journal of the North American Benthological Society (15): 179–184. 
  18. Davis, M.A.; J.P. Grime, K. Thompson (2000). "Fluctuating resources in plant communities: A general theory of invisibility". Journal of Ecology 88 (3): 528–534. doi:10.1046/j.1365-2745.2000.00473.x. 
  19. Byers, J.E. (2002). "Impact of non-indigenous species on natives enhanced by anthropogenic alteration of selection regimes". Oikos 97 (3): 449–458. doi:10.1034/j.1600-0706.2002.970316.x. 
  20. Smith, J. P., Jr.; K. Berg. Inventory of rare and endangered vascular plants of California. Sacramento, California: California Native Plant Society. ISBN 0-943460-14-X. 
  21. 21.0 21.1 Elton, C.S. (2000) [1958]. The Ecology of Invasions by Animals and Plants. Foreword by Daniel Simberloff. Chicago: University of Chicago Press. pp. 196. ISBN 0-226-20638-6. 
  22. Byers, J.E.; E.G. Noonburg (2003). "Scale dependent effects of biotic resistance to biological invasion". Ecology 84: 1428–1433. doi:10.1890/02-3131. 
  23. Levine, J. M. (2000). "Species diversity and biological invasions: Relating local process to community pattern". Science 288: 852–854. doi:10.1126/science.288.5467.852. PMID 10797006. 
  24. Stachowicz, J.J.; D. Tilman. "Species invasions and the relationships between species diversity, community saturation, and ecosystem functioning". in D.F. Sax, J.J. Stachowicz, and S.D. Gaines. Species Invasions: Insights into Ecology, Evolution, and Biogeography. Sunderland, Massachusetts: Sinauer Associates. ISBN 0878938117. 
  25. Fritts, T.H.; D. Leasman-Tanner (2001). The Brown Treesnake on Guam: How the arrival of one invasive species damaged the ecology, commerce, electrical systems, and human health on Guam: A comprehensive information source. http://www.fort.usgs.gov/resources/education/bts/bts_home.asp. Retrieved on 2007-09-01. 
  26. Cassey, P; T.M. Blackburn, R.P. Duncan and S.L. Chown (2005). "Concerning Invasive Species: Reply to Brown and Sax". Austral Ecology 30: 475. doi:10.1111/j.1442-9993.2005.01505.x. 
  27. Matisoo-Smith, E.; R.M. Roberts, G.J. Irwin, J.S. Allen, D. Penny, and D.M. Lambert (1998). "Patterns of prehistoric human mobility in Polynesia indicated my mtDNA from the Pacific rat". Proceedings of the National Academy of the Sciences USA 95: 15145–15150. doi:10.1073/pnas.95.25.15145. PMID 9844030. 
  28. Aquatic invasive species. A Guide to Least-Wanted Aquatic Organisms of the Pacific Northwest. 2001. University of Washington. [1]
  29. 29.0 29.1 29.2 29.3 29.4 29.5 29.6 29.7 29.8 Pimentel, D.; R. Zuniga and D., Morrison (2005). "Update on the environmental and economic costs associated with alien-invasive species in the United States.". Ecological Economics 52: 273–288. 
  30. Grosholz, E.D. (2005). "Recent biological invasion may hasten "invasion meltdown" by accelerating historical introductions". Proceedings of the National Academy of Sciences 102: 1088–1091. doi:10.1073/pnas.0308547102. PMID 15657121. 
  31. Mack, R.; D. Simberloff, W.M. Lonsdale, H. Evans, M. Clout, and F.A. Bazzazf (2000). "Biotic invasions: Causes, epidemiology, global consequences, and control". Ecological Applications 10: 689–710. doi:10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2. 
  32. Hawkes, C.V.; I.F. Wren, D.J. Herman, and M.K. Firestone (2005). "Plant invasion alters nitrogen cycling by modifying the soil nitrifying community". Ecology Letters 8: 976–985. doi:10.1111/j.1461-0248.2005.00802.x. 
  33. Rhymer, J. M.; Simberloff, D. (1996). "Extinction by hybridization and introgression". Annual Review of Ecology and Systematics 27 (27): 83–109. doi:10.1146/annurev.ecolsys.27.1.83. 
  34. Ayres, D.; et al (2004). "Spread of exotic cordgrasses and hybrids (Spartina sp.) in the tidal marshes of San Francisco Bay, California". 'USA Biological Invasions' 6: 221–231. doi:10.1023/B:BINV.0000022140.07404.b7. 
  35. Hybridization and Introgression; Extinctions; from "The evolutionary impact of invasive species; by H. A. Mooney and E. E. Cleland" Proc Natl Acad Sci U S A. 2001 May 8; 98(10): 5446–5451. doi: 10.1073/pnas.091093398. Proc Natl Academy Sci U S A, v.98(10); May 8, 2001, The National Academy of Sciences
  36. Glossary: definitions from the following publication: Aubry, C., R. Shoal and V. Erickson. 2005. Grass cultivars: their origins, development, and use on national forests and grasslands in the Pacific Northwest. USDA Forest Service. 44 pages, plus appendices.; Native Seed Network (NSN), Institute for Applied Ecology, 563 SW Jefferson Ave, Corvallis, OR 97333, USA
  37. EXTINCTION BY HYBRIDIZATION AND INTROGRESSION; by Judith M. Rhymer , Department of Wildlife Ecology, University of Maine, Orono, Maine 04469, USA; and Daniel Simberloff, Department of Biological Science, Florida State University, Tallahassee, Florida 32306, USA; Annual Review of Ecology and Systematics, November 1996, Vol. 27, Pages 83-109 (doi: 10.1146/annurev.ecolsys.27.1.83), [2]
  38. Genetic Pollution from Farm Forestry using eucalypt species and hybrids; A report for the RIRDC/L&WA/FWPRDC; Joint Venture Agroforestry Program; by Brad M. Potts, Robert C. Barbour, Andrew B. Hingston; September 2001; RIRDC Publication No 01/114; RIRDC Project No CPF - 3A; ISBN 0 642 58336 6; ISSN 1440-6845; Australian Government, Rural Industrial Research and Development Corporation
  39. Simberloff, D. (2001). "Biological invasions - How are they affecting us, and what can we do about them?". Western North American Naturalist 61: 308–315. 
  40. Tom Pelton, Baltimore Sun, May 26, 2006.
  41. David Pimentel, Lori Lach, Rodolfo Zuniga, and Doug Morrison, Environmental and Economic Costs Associated with Non-Indigenous Species in the United States, College of Agriculture and Life Sciences, Cornell University (Ithaca, New York), June 12, 1999.
  42. Corn; Tim Johnson, "Invasive Species," The Burlington Free Press, November 9, 2003
  43. (March 3, 2005). Balsam woolly aphid Adelges piceae (Ratzeburg). ForestPests.org. Retrieved on September 1 2007.
  44. Eiswerth, M.E. (2005). "Input-output modeling, outdoor recreation, and the economic impacts of weeds". Weed Science 53: 130–137. doi:10.1614/WS-04-022R. 
  45. Eurasian Watermilfoil in the Great Lakes Region. GreatLakes.net. Retrieved on September 1 2007.
  46. Aquatic invasive species. A Guide to Least-Wanted Aquatic Organisms of the Pacific Northwest. 2001. University of Washington
  47. Lanciotti, R.S. (1999). "Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States". Science 286: 2333–2337. doi:10.1126/science.286.5448.2333. PMID 10600742. 
  48. Hallegraeff, G.M. (1998). "Transport of toxic dinoflagellates via ships' ballast water: Bioeconomic risk assessment and efficacy of possible ballast water management strategies". Marine Ecology Progress Series 168: 297–309. doi:10.3354/meps168297. 
  49. Millennium Ecosystem Assessment (2005). "Ecosystems and Human Well-being: Biodiversity Synthesis" (PDF). World Resources Institute.

Further reading

Chronological order of publication (oldest first)

External links