Transport Layer

In computer networking, the Transport Layer is a group of methods and protocols within a layered architecture of network components, within which it is responsible for encapsulating application data blocks into datagrams (packets) suitable for transfer to the network infrastructure for transmission to the destination host, or managing the reverse transaction by abstracting network datagrams and delivering them to an application. Such protocol are also referred to as "transport protocols".

Transport layers are contained in both the TCP/IP model (RFC 1122),[1] which is the foundation of the Internet, and the Open Systems Interconnection (OSI) model of general networking. The definitions of the Transport Layer are slightly different in these two models. This article primarily refers to the TCP/IP model. See also the OSI model definition of the Transport Layer.

The most well-known transport protocol is the Transmission Control Protocol (TCP). It lent its name to the title of the entire Internet Protocol Suite, TCP/IP. It is used for connection-oriented transmissions, whereas the connectionless User Datagram Protocol (UDP) is used for simpler messaging transmissions. TCP is the more complex protocol, due to its stateful design incorporating reliable transmission. Other prominent protocols in this group are the Datagram Congestion Control Protocol (DCCP) and the Stream Control Transmission Protocol (SCTP).

Contents

Transport Layer functions

The Transport Layer is responsible for delivering data to the appropriate application process on the host computers. This involves statistical multiplexing of data from different application processes, i.e. forming data packets, and adding source and destination port numbers in the header of each Transport Layer data packet. Together with the source and destination IP address, the port numbers constitutes a network socket, i.e. an identification address of the process-to-process communication. In the OSI model, this function is supported by the Session Layer.

Some Transport Layer protocols, for example TCP, but not UDP, support virtual circuits, i.e. provide connection oriented communication over an underlying packet oriented datagram network. A byte-stream is delivered while hiding the packet mode communication for the application processes. This involves connection establishment, dividing of the data stream into packets called segments, segment numbering and reordering of out-of order data.

Finally, some Transport Layer protocols, for example TCP, but not UDP, provide end-to-end reliable communication, i.e. error recovery by means of error detecting code and automatic repeat request (ARQ) protocol. The ARQ protocol also provides flow control, which may be combined with congestion avoidance.

UDP is a very simple protocol, and does not provide virtual circuits, nor reliable communication, delegating these functions to the application program. UDP packets are called datagrams, rather than segments.

TCP is used for many protocols, including HTTP web browsing and email transfer. UDP may be used for multicasting and broadcasting, since retransmissions are not possible to a large amount of hosts. UDP typically gives higher throughput and shorter latency, and is therefore often used for real-time multimedia communication where packet loss occasionally can be accepted, for example IP-TV and IP-telephony, and for online computer games.

In many non-IP-based networks, for example X.25, Frame Relay and ATM, the connection oriented communication is implemented at network layer or data link layer rather than the Transport Layer. In X.25, in telephone network modems and in wireless communication systems, reliable node-to-node communication is implemented at lower protocol layers.

The OSI/X.25 protocol suite defines five classes of the OSI transport protocol, ranging from class 0 (which is also known as TP0 and provides the least error recovery) to class 4 (which is also known as TP4 and is designed for less reliable networks, similar to the Internet).

OSI Model
7 Application Layer
6 Presentation Layer
5 Session Layer
4 Transport Layer
3 Network Layer
2 Data Link Layer
1 Physical Layer

Transport Layer services

There is a long list of services that can be optionally provided by the Transport Layer. None of them are compulsory, because not all applications require all available services.

Comparison of principal transport protocols

UDP TCP DCCP SCTP
Packet header size 8 Bytes 20 Bytes 12 or 16 bytes 12 Bytes + Variable Chunk Header
Transport Layer packet entity Datagram Octet Datagram Datagram
Port numbering Yes Yes Yes Yes
Error detection Optional Yes Yes Yes
Reliability: Error recovery by automatic repeat request (ARQ) No Yes No Yes
Virtual circuits: Sequence numbering and reordering No Yes Yes Optional
Flow control No Yes Yes Yes
Congestion avoidance: Variable congestion window, slow start, time outs No Yes Yes Yes
Multiple streams No No No Yes
ECN support No Yes Yes Yes

Examples

  • ATP, AppleTalk Transaction Protocol
  • CUDP, Cyclic UDP
  • DCCP, Datagram Congestion Control Protocol
  • FCP, Fiber Channel Protocol
  • IL, IL Protocol
  • NBF, NetBIOS Frames protocol
  • SCTP, Stream Control Transmission Protocol
  • SPX, Sequenced Packet Exchange
  • SST, Structured Stream Transport
  • TCP, Transmission Control Protocol
  • UDP, User Datagram Protocol
  • UDP Lite

References

  1. RFC 1122, Requirements for Internet Hosts -- Communication Layers, IETF, R. Braden (Editor), October 1989